(* Content-type: application/vnd.wolfram.mathematica *) (*** Wolfram Notebook File ***) (* http://www.wolfram.com/nb *) (* CreatedBy='Mathematica 11.1' *) (*CacheID: 234*) (* Internal cache information: NotebookFileLineBreakTest NotebookFileLineBreakTest NotebookDataPosition[ 158, 7] NotebookDataLength[ 191426, 4476] NotebookOptionsPosition[ 176869, 4118] NotebookOutlinePosition[ 177256, 4135] CellTagsIndexPosition[ 177213, 4132] WindowFrame->Normal*) (* Beginning of Notebook Content *) Notebook[{ Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Int", "[", "1.5", "]"}]], "Input", CellChangeTimes->{{3.719754864836797*^9, 3.71975486893917*^9}, { 3.7197549124184275`*^9, 3.7197549144847155`*^9}},ExpressionUUID->"d92d7c6d-87c4-43db-8cc0-\ 9160d904741d"], Cell[BoxData[ RowBox[{"Int", "[", "1.5`", "]"}]], "Output", CellChangeTimes->{ 3.7197549161591363`*^9},ExpressionUUID->"5dab1284-e1af-49fc-a188-\ 940e0047f9d8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Integer", "[", "1.5", "]"}]], "Input", CellChangeTimes->{{3.719754919425399*^9, 3.71975492459151*^9}},ExpressionUUID->"374bd63a-4639-4345-bc78-\ 38a35d23c40a"], Cell[BoxData[ RowBox[{"Integer", "[", "1.5`", "]"}]], "Output", CellChangeTimes->{ 3.719754924865885*^9},ExpressionUUID->"b85dfd35-ede2-47f6-b1b5-\ d47350768040"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"IntegerPart", "[", RowBox[{"Log", "[", RowBox[{"4", FractionBox[ RowBox[{"Log", "[", "10", "]"}], RowBox[{"Log", "[", "2", "]"}]]}], "]"}], "]"}], "+", "1"}]], "Input", CellChangeTimes->{{3.7197550387125893`*^9, 3.7197550594391065`*^9}, { 3.7197551243689365`*^9, 3.7197551412923284`*^9}},ExpressionUUID->"dcf4ba55-094a-4461-9ed5-\ 10bd54a2c3ca"], Cell[BoxData["3"], "Output", CellChangeTimes->{3.7197550613020225`*^9, 3.719755143621251*^9},ExpressionUUID->"583afd36-61cf-4e4e-a0c7-\ b104512f85e2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Log", "[", RowBox[{"4", FractionBox[ RowBox[{"Log", "[", "10", "]"}], RowBox[{"Log", "[", "2", "]"}]]}], "]"}]], "Input",ExpressionUUID->\ "09a735cb-20c7-4dae-905a-afda6a03d389"], Cell[BoxData[ RowBox[{"Log", "[", FractionBox[ RowBox[{"4", " ", RowBox[{"Log", "[", "10", "]"}]}], RowBox[{"Log", "[", "2", "]"}]], "]"}]], "Output", CellChangeTimes->{ 3.7197551588245983`*^9},ExpressionUUID->"44718d6e-5074-4dfe-befd-\ a09cc8ea5c1a"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", RowBox[{"Log", "[", FractionBox[ RowBox[{"4", " ", RowBox[{"Log", "[", "10", "]"}]}], RowBox[{"Log", "[", "2", "]"}]], "]"}], "]"}]], "Input", NumberMarks->False,ExpressionUUID->"37332664-3533-4676-90cc-bfd62cc95740"], Cell[BoxData["2.5868397269495107`"], "Output", CellChangeTimes->{ 3.719755161558679*^9},ExpressionUUID->"70b633de-243c-4c5b-8160-\ 07faefabb292"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Log2", "[", RowBox[{"4", RowBox[{"Log2", "[", "10", "]"}]}], "]"}]], "Input", CellChangeTimes->{{3.7197553691946125`*^9, 3.7197553748503428`*^9}},ExpressionUUID->"314750d9-8827-4f9d-a30b-\ d87f547ece95"], Cell[BoxData[ FractionBox[ RowBox[{"Log", "[", FractionBox[ RowBox[{"4", " ", RowBox[{"Log", "[", "10", "]"}]}], RowBox[{"Log", "[", "2", "]"}]], "]"}], RowBox[{"Log", "[", "2", "]"}]]], "Output", CellChangeTimes->{ 3.719755380095006*^9},ExpressionUUID->"7e727a88-ff86-496a-97e6-\ 83942f162f85"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"N", "[", FractionBox[ RowBox[{"Log", "[", FractionBox[ RowBox[{"4", " ", RowBox[{"Log", "[", "10", "]"}]}], RowBox[{"Log", "[", "2", "]"}]], "]"}], RowBox[{"Log", "[", "2", "]"}]], "]"}]], "Input", NumberMarks->False,ExpressionUUID->"6c4262a4-a2bc-4478-b12b-12d3f4e89aed"], Cell[BoxData["3.732020845644619`"], "Output", CellChangeTimes->{ 3.7197553851068716`*^9},ExpressionUUID->"207a64d6-a357-49cb-ae60-\ 746cf4ef3d1b"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"IntegerPart", "[", RowBox[{"Log2", "[", RowBox[{"4", RowBox[{"Log2", "[", "10", "]"}]}], "]"}], "]"}], "+", "1"}]], "Input", CellChangeTimes->{{3.7197554027188396`*^9, 3.7197554117283225`*^9}},ExpressionUUID->"cd43f385-9c27-47e5-8b97-\ 043898c699ca"], Cell[BoxData["4"], "Output", CellChangeTimes->{ 3.719755413134557*^9},ExpressionUUID->"a73e9da5-e100-4f37-aa11-\ e7ce0ab8b40d"] }, Open ]], Cell[BoxData[""], "Input", CellChangeTimes->{{3.7197569287113295`*^9, 3.7197569300462008`*^9}},ExpressionUUID->"76aeba9b-f8fa-454f-b4f4-\ 84fc55daca5c"], Cell[CellGroupData[{ Cell[BoxData[ NamespaceBox["LinguisticAssistant", DynamicModuleBox[{Typeset`query$$ = "[2(x_1+{x_2})^2,4(x_1+{x_2}^2)x_2]^T", Typeset`boxes$$ = RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"2", "*", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"Subscript", "[", RowBox[{"x", ",", " ", "1"}], "]"}], " ", "+", " ", RowBox[{"{", RowBox[{"Subscript", "[", RowBox[{"x", ",", " ", "2"}], "]"}], "}"}]}], ")"}], "^", "2"}]}], ",", " ", RowBox[{"4", "*", RowBox[{"(", RowBox[{ RowBox[{"Subscript", "[", RowBox[{"x", ",", " ", "1"}], "]"}], " ", "+", " ", RowBox[{ RowBox[{"{", RowBox[{"Subscript", "[", RowBox[{"x", ",", " ", "2"}], "]"}], "}"}], "^", "2"}]}], ")"}], "*", RowBox[{"Subscript", "[", RowBox[{"x", ",", " ", "2"}], "]"}]}]}], "}"}], "]"}], Typeset`allassumptions$$ = {}, Typeset`assumptions$$ = {}, Typeset`open$$ = {1, 2}, Typeset`querystate$$ = { "Online" -> True, "Allowed" -> True, "mparse.jsp" -> 4.8283509`8.13534381838358, "Messages" -> {}}}, DynamicBox[ToBoxes[ AlphaIntegration`LinguisticAssistantBoxes["", 4, Automatic, Dynamic[Typeset`query$$], Dynamic[Typeset`boxes$$], Dynamic[Typeset`allassumptions$$], Dynamic[Typeset`assumptions$$], Dynamic[Typeset`open$$], Dynamic[Typeset`querystate$$]], StandardForm], ImageSizeCache->{1275., {137., 54.}}, TrackedSymbols:>{ Typeset`query$$, Typeset`boxes$$, Typeset`allassumptions$$, Typeset`assumptions$$, Typeset`open$$, Typeset`querystate$$}], DynamicModuleValues:>{}, UndoTrackedVariables:>{Typeset`open$$}], BaseStyle->{"Deploy"}, DeleteWithContents->True, Editable->False, SelectWithContents->True]], "Input", CellChangeTimes->{ 3.719756935933087*^9},ExpressionUUID->"60d87074-957d-48e0-b7b7-\ ddcd2714fbf0"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"2", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubscriptBox["x", "2"]}], ")"}], "2"]}], ",", RowBox[{"4", " ", SubscriptBox["x", "2"], " ", RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubsuperscriptBox["x", "2", "2"]}], ")"}]}]}], "}"}], "}"}]], "Output", CellChangeTimes->{ 3.7197569445316324`*^9},ExpressionUUID->"8afe3268-8d7e-4628-847f-\ 6d3252f8076e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"2", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubscriptBox["x", "2"]}], ")"}], "2"]}], ",", RowBox[{"4", " ", SubscriptBox["x", "2"], " ", RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubsuperscriptBox["x", "2", "2"]}], ")"}]}]}], "}"}], "}"}], "]"}]], "Input", NumberMarks->False,ExpressionUUID->"440a6b15-42ed-4b4e-b36a-cee47b366fdc"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"2", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubscriptBox["x", "2"]}], ")"}], "2"]}], RowBox[{"4", " ", SubscriptBox["x", "2"], " ", RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubsuperscriptBox["x", "2", "2"]}], ")"}]}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{ 3.7197569548414135`*^9},ExpressionUUID->"c59fbd9d-f4bb-444d-8638-\ e5a644487b3e"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"2", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubscriptBox["x", "2"]}], ")"}], "2"]}], ",", RowBox[{"4", " ", SubscriptBox["x", "2"], " ", RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubsuperscriptBox["x", "2", "2"]}], ")"}]}]}], "}"}], "}"}], "]"}]], "Input", NumberMarks->False,ExpressionUUID->"500e8cd3-ef3e-4f22-9e1f-a1f4fb08a751"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"2", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubscriptBox["x", "2"]}], ")"}], "2"]}], RowBox[{"4", " ", SubscriptBox["x", "2"], " ", RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubsuperscriptBox["x", "2", "2"]}], ")"}]}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{ 3.7197569601625395`*^9},ExpressionUUID->"50f3309a-5154-4d06-8c1d-\ e40dfdaed0ca"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"2", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubscriptBox["x", "2"]}], ")"}], "2"]}], ",", RowBox[{"4", " ", SubscriptBox["x", "2"], " ", RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubsuperscriptBox["x", "2", "2"]}], ")"}]}]}], "}"}], "}"}], "]"}]], "Input", NumberMarks->False,ExpressionUUID->"1cbb9961-2b81-4fe7-9797-ea0081b355c5"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"2", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubscriptBox["x", "2"]}], ")"}], "2"]}], "}"}], ",", RowBox[{"{", RowBox[{"4", " ", SubscriptBox["x", "2"], " ", RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubsuperscriptBox["x", "2", "2"]}], ")"}]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{ 3.7197569751587687`*^9},ExpressionUUID->"d56f92b0-5db4-4f0d-a039-\ aaaadf406b3d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"ArrayRules", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"2", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubscriptBox["x", "2"]}], ")"}], "2"]}], "}"}], ",", RowBox[{"{", RowBox[{"4", " ", SubscriptBox["x", "2"], " ", RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubsuperscriptBox["x", "2", "2"]}], ")"}]}], "}"}]}], "}"}], "]"}]], "Input", NumberMarks->False,ExpressionUUID->"547ed18f-2219-4614-a6fd-a00d17e2afdf"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{ RowBox[{"{", RowBox[{"1", ",", "1"}], "}"}], "\[Rule]", RowBox[{"2", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubscriptBox["x", "2"]}], ")"}], "2"]}]}], ",", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "1"}], "}"}], "\[Rule]", RowBox[{"4", " ", SubscriptBox["x", "2"], " ", RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubsuperscriptBox["x", "2", "2"]}], ")"}]}]}], ",", RowBox[{ RowBox[{"{", RowBox[{"_", ",", "_"}], "}"}], "\[Rule]", "0"}]}], "}"}]], "Output", CellChangeTimes->{ 3.719756984889575*^9},ExpressionUUID->"38494020-e2cb-4129-9d05-\ 31b294ff12ec"] }, Open ]], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"2", " ", SuperscriptBox[ RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubscriptBox["x", "2"]}], ")"}], "2"]}], "}"}], ",", RowBox[{"{", RowBox[{"4", " ", SubscriptBox["x", "2"], " ", RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubsuperscriptBox["x", "2", "2"]}], ")"}]}], "}"}]}], "}"}]], "Input",E\ xpressionUUID->"ef27111c-fcaa-46e4-ae38-3c40b2380603"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Grad", "[", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"2", " ", RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SuperscriptBox[ SubscriptBox["x", "2"], "2"]}], ")"}]}], "}"}], ",", RowBox[{"{", RowBox[{"4", " ", SubscriptBox["x", "2"], " ", RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubsuperscriptBox["x", "2", "2"]}], ")"}]}], "}"}]}], "}"}], ",", RowBox[{"{", RowBox[{ SubscriptBox["x", "1"], ",", SubscriptBox["x", "2"]}], " ", "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.719757222846794*^9, 3.719757247964308*^9}, { 3.719757313324375*^9, 3.7197573236332865`*^9}},ExpressionUUID->"26db2f90-f6bc-42df-9f52-\ 5e90f0c0368d"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"{", RowBox[{"2", ",", RowBox[{"4", " ", SubscriptBox["x", "2"]}]}], "}"}], "}"}], ",", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"4", " ", SubscriptBox["x", "2"]}], ",", RowBox[{ RowBox[{"8", " ", SubsuperscriptBox["x", "2", "2"]}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubsuperscriptBox["x", "2", "2"]}], ")"}]}]}]}], "}"}], "}"}]}], "}"}]], "Output", CellChangeTimes->{3.7197572495388384`*^9, 3.719757325228812*^9},ExpressionUUID->"337cefd5-1bf7-4b7b-a775-\ d2205e7a26f8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"2", ",", RowBox[{"4", " ", SubscriptBox["x", "2"]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"4", " ", SubscriptBox["x", "2"]}], ",", RowBox[{ RowBox[{"8", " ", SubsuperscriptBox["x", "2", "2"]}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubsuperscriptBox["x", "2", "2"]}], ")"}]}]}]}], "}"}]}], "}"}]], "Input", CellChangeTimes->{{3.7197574053362675`*^9, 3.7197574326846275`*^9}},ExpressionUUID->"3142631b-0295-4df6-81c5-\ 7074eb1257e2"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"2", ",", RowBox[{"4", " ", SubscriptBox["x", "2"]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"4", " ", SubscriptBox["x", "2"]}], ",", RowBox[{ RowBox[{"8", " ", SubsuperscriptBox["x", "2", "2"]}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubsuperscriptBox["x", "2", "2"]}], ")"}]}]}]}], "}"}]}], "}"}]], "Output", CellChangeTimes->{ 3.719757433638346*^9},ExpressionUUID->"ac104c0c-f9d8-46eb-9b6f-\ 2b2d4603a3a0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"2", ",", RowBox[{"4", " ", SubscriptBox["x", "2"]}]}], "}"}], ",", RowBox[{"{", RowBox[{ RowBox[{"4", " ", SubscriptBox["x", "2"]}], ",", RowBox[{ RowBox[{"8", " ", SubsuperscriptBox["x", "2", "2"]}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubsuperscriptBox["x", "2", "2"]}], ")"}]}]}]}], "}"}]}], "}"}], "]"}]], "Input", NumberMarks->False,ExpressionUUID->"1035cc89-3d00-4b09-912f-c234378719c1"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"2", RowBox[{"4", " ", SubscriptBox["x", "2"]}]}, { RowBox[{"4", " ", SubscriptBox["x", "2"]}], RowBox[{ RowBox[{"8", " ", SubsuperscriptBox["x", "2", "2"]}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubsuperscriptBox["x", "2", "2"]}], ")"}]}]}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{ 3.719757437220143*^9},ExpressionUUID->"8a4580ca-2fc4-4be0-b063-\ 901923b113e2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ SubscriptBox["x", "1"], "=", "1"}]], "Input", CellChangeTimes->{{3.7197574494081163`*^9, 3.7197574503961773`*^9}},ExpressionUUID->"c0405012-4461-439f-b531-\ 16a7051b4e7f"], Cell[BoxData["1"], "Output", CellChangeTimes->{ 3.7197574546489143`*^9},ExpressionUUID->"69209e38-1271-45ba-8431-\ 34659581f44d"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ SubscriptBox["x", "2"], "=", "0"}]], "Input", CellChangeTimes->{{3.7197574600229225`*^9, 3.719757462462059*^9}},ExpressionUUID->"56fdb65f-83a7-4c13-a9e1-\ dd56afe56607"], Cell[BoxData["0"], "Output", CellChangeTimes->{ 3.719757462941532*^9},ExpressionUUID->"2ea9f3e3-c5ce-4494-95d5-\ 58276d60d131"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"2", RowBox[{"4", " ", SubscriptBox["x", "2"]}]}, { RowBox[{"4", " ", SubscriptBox["x", "2"]}], RowBox[{ RowBox[{"8", " ", SubsuperscriptBox["x", "2", "2"]}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubsuperscriptBox["x", "2", "2"]}], ")"}]}]}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Input",ExpressionUUID->"439332a1-fddd-4ca0-\ 8cb6-c438f550f6af"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "4"}], "}"}]}], "}"}]], "Output", CellChangeTimes->{ 3.7197574708830476`*^9},ExpressionUUID->"a7e3e3eb-fdf2-4b74-94ff-\ 5bce08a1e1bc"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"G", "=", TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ {"2", RowBox[{"4", " ", SubscriptBox["x", "2"]}]}, { RowBox[{"4", " ", SubscriptBox["x", "2"]}], RowBox[{ RowBox[{"8", " ", SubsuperscriptBox["x", "2", "2"]}], "+", RowBox[{"4", " ", RowBox[{"(", RowBox[{ SubscriptBox["x", "1"], "+", SubsuperscriptBox["x", "2", "2"]}], ")"}]}]}]} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]}]], "Input", CellChangeTimes->{{3.7197575041491904`*^9, 3.719757510761871*^9}},ExpressionUUID->"290f73bc-fa80-4847-b119-\ a947df32bf0c"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "4"}], "}"}]}], "}"}]], "Output", CellChangeTimes->{ 3.719757511866406*^9},ExpressionUUID->"f85900fa-e2fb-4674-b03c-\ 92ac2884cee2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"p", "=", RowBox[{ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], "'"}]}]], "Input", CellChangeTimes->{{3.719757520410582*^9, 3.719757546876221*^9}},ExpressionUUID->"3e955858-2b4b-47f9-8891-\ d481cf1e6fe4"], Cell[BoxData[ SuperscriptBox[ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], "\[Prime]", MultilineFunction->None]], "Output", CellChangeTimes->{ 3.719757542224715*^9},ExpressionUUID->"4ed10eb6-6c2a-43a9-8a20-\ 97bf1c4ab8d9"] }, Open ]], Cell[BoxData[ RowBox[{"p", "=", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}]], "Input", CellChangeTimes->{ 3.719757549382682*^9},ExpressionUUID->"b57a2131-b02a-437c-990b-\ a4f6e51a7da5"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"P", ".", "G", ".", RowBox[{"Transpose", "[", "p", "]"}]}]], "Input", CellChangeTimes->{{3.71975759766743*^9, 3.7197576257618275`*^9}},ExpressionUUID->"0287842c-89bb-4215-ab82-\ f95d8a913025"], Cell[BoxData[ RowBox[{"P", ".", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "4"}], "}"}]}], "}"}], ".", RowBox[{"Transpose", "[", SuperscriptBox[ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], "\[Prime]", MultilineFunction->None], "]"}]}]], "Output", CellChangeTimes->{ 3.7197576269777546`*^9},ExpressionUUID->"d3b56f93-255c-424d-85d3-\ c8a5c004b797"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData["p"], "Input", CellChangeTimes->{{3.7197576425408936`*^9, 3.71975764412332*^9}},ExpressionUUID->"a0bbc854-abce-40f6-86b6-\ bf284b44e98e"], Cell[BoxData[ SuperscriptBox[ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], "\[Prime]", MultilineFunction->None]], "Output", CellChangeTimes->{ 3.7197576445195827`*^9},ExpressionUUID->"6140fede-93ae-418d-a0f1-\ 510b1d7e35ad"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"p", "=", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]}]], "Input", CellChangeTimes->{{3.7197576512624755`*^9, 3.719757656835024*^9}},ExpressionUUID->"9c52ef77-9ed2-48da-ad93-\ 77404c4bc0ea"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}]], "Output", CellChangeTimes->{ 3.7197576583076706`*^9},ExpressionUUID->"2f39a6d9-ceb5-42c5-9d4e-\ 97689e28e659"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"P", ".", "G", ".", RowBox[{"Transpose", "[", "p", "]"}]}]], "Input",ExpressionUUID->"04c2aceb-\ 2850-49a4-adbb-bba9a29833af"], Cell[BoxData[ RowBox[{"P", ".", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"2", ",", "0"}], "}"}], ",", RowBox[{"{", RowBox[{"0", ",", "4"}], "}"}]}], "}"}], ".", RowBox[{"Transpose", "[", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], "]"}]}]], "Output", CellChangeTimes->{ 3.7197576647288857`*^9},ExpressionUUID->"01e025f7-173f-4809-b8e4-\ 8a3e57c59931"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"p", "=", RowBox[{"(", GridBox[{ { RowBox[{"-", "1"}], "1"} }], ")"}]}]], "Input", CellChangeTimes->{{3.719757691746685*^9, 3.7197577104326973`*^9}},ExpressionUUID->"2ccf8542-8e5f-44af-9dd9-\ a4142906f596"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], "}"}]], "Output", CellChangeTimes->{ 3.719757712635735*^9},ExpressionUUID->"edfeb771-decc-420c-a3d8-\ 1a11a2610649"] }, Open ]], Cell[BoxData[ RowBox[{"P", ".", "G", ".", RowBox[{"Transpose", "[", "p", "]"}]}]], "Input", CellChangeTimes->{{3.719757745863621*^9, 3.7197577487526064`*^9}},ExpressionUUID->"60842eb9-5e7b-40d0-a99a-\ e94dc9e944a4"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"P", ".", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"-", "2"}], "}"}], ",", RowBox[{"{", "4", "}"}]}], "}"}]}]], "Input", CellChangeTimes->{ 3.719757726329835*^9},ExpressionUUID->"f364e2a0-dc83-48ad-b7fd-\ a87e19c6a3f3"], Cell[BoxData[ RowBox[{"P", ".", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"-", "2"}], "}"}], ",", RowBox[{"{", "4", "}"}]}], "}"}]}]], "Output", CellChangeTimes->{ 3.7197577264365544`*^9},ExpressionUUID->"976dbf80-de88-41c5-9179-\ b0a7cc1d60c0"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Transpose", "[", "p", "]"}]], "Input",ExpressionUUID->"490a9dab-bc6c-4495-8b50-a580ffd8deee"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"-", "1"}], "}"}], ",", RowBox[{"{", "1", "}"}]}], "}"}]], "Output", CellChangeTimes->{ 3.719757758590127*^9},ExpressionUUID->"f97d91d7-891a-49c0-9a91-\ 55f4e47ee2f8"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"-", "1"}], "}"}], ",", RowBox[{"{", "1", "}"}]}], "}"}], "]"}]], "Input", NumberMarks->False,ExpressionUUID->"af33e3c9-e48c-4a44-80ba-3c069d5a3b1b"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"-", "1"}]}, {"1"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{ 3.719757763658599*^9},ExpressionUUID->"d32e89ed-d907-4cec-b59e-\ 3ba7f39c7981"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData["p"], "Input", CellChangeTimes->{ 3.7197577759669724`*^9},ExpressionUUID->"a5805e99-2703-4a50-b555-\ f5729c7f1496"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], "}"}]], "Output", CellChangeTimes->{ 3.719757776833105*^9},ExpressionUUID->"27f29886-2fde-4e5a-8238-\ 82c4fae3036c"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"MatrixForm", "[", RowBox[{"{", RowBox[{"{", RowBox[{ RowBox[{"-", "1"}], ",", "1"}], "}"}], "}"}], "]"}]], "Input", NumberMarks->False,ExpressionUUID->"433b8884-bd07-4755-ba29-4b56adbbd5d6"], Cell[BoxData[ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"-", "1"}], "1"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]], "Output", CellChangeTimes->{ 3.71975779103344*^9},ExpressionUUID->"219320a5-b351-424e-9387-d1b892f5d615"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"-", "1"}], "1"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]], ".", "G", ".", TagBox[ RowBox[{"(", "\[NoBreak]", GridBox[{ { RowBox[{"-", "1"}]}, {"1"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.7]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], "\[NoBreak]", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]}]], "Input", CellChangeTimes->{{3.7197577952726994`*^9, 3.7197578019353957`*^9}},ExpressionUUID->"261dea9d-709a-4642-b76c-\ 2911e138885a"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", "6", "}"}], "}"}]], "Output", CellChangeTimes->{ 3.7197578030986943`*^9},ExpressionUUID->"b816226c-b4e4-4aef-95fd-\ 090edbefb024"] }, Open ]], Cell[BoxData[ RowBox[{" ", "0"}]], "Input", CellChangeTimes->{{3.719758026500272*^9, 3.7197580458066635`*^9}},ExpressionUUID->"b0040dbe-5c60-4d06-9da7-\ c268bc77fd11"], Cell[CellGroupData[{ Cell["\\sqrt{-\\ln (1-\\rho)} \\leq \\alpha \\leq \\sqrt{-\\ln \\rho}", \ "WolframAlphaLong", CellChangeTimes->{{3.719762510886896*^9, 3.719762511915169*^9}},ExpressionUUID->"3fe0e9be-5059-4395-8bc3-\ f14fc7e47f6e"], Cell[BoxData[ NamespaceBox["WolframAlphaQueryResults", DynamicModuleBox[{Typeset`q$$ = "\\sqrt{-\\ln (1-\\rho)} \\leq \\alpha \\leq \\sqrt{-\\ln \\rho}", Typeset`opts$$ = { AppearanceElements -> { "Warnings", "Assumptions", "Brand", "Pods", "PodMenus", "Unsuccessful", "Sources"}, Asynchronous -> All, TimeConstraint -> {30, Automatic, Automatic, Automatic}, Method -> { "Formats" -> {"cell", "minput", "msound", "dataformats"}, "Server" -> "http://api.wolframalpha.com/v1/"}}, Typeset`elements$$ = { "Warnings", "Assumptions", "Brand", "Pods", "PodMenus", "Unsuccessful", "Sources"}, Typeset`pod1$$ = XMLElement[ "pod", {"title" -> "Input", "scanner" -> "Identity", "id" -> "Input", "position" -> "100", "error" -> "false", "numsubpods" -> "1"}, { XMLElement["subpod", {"title" -> ""}, { XMLElement[ "minput", {}, { "Sqrt[-Log[1 - \[Rho]]] <= \[Alpha] <= Sqrt[-Log[\[Rho]]]"}], XMLElement["cell", {"compressed" -> False, "string" -> True}, { Cell[ BoxData[ FormBox[ TagBox[ RowBox[{ SqrtBox[ RowBox[{"-", RowBox[{"log", "(", RowBox[{"1", "-", "\[Rho]"}], ")"}]}]], "\[LessEqual]", "\[Alpha]", "\[LessEqual]", SqrtBox[ RowBox[{"-", RowBox[{"log", "(", "\[Rho]", ")"}]}]]}], PolynomialForm[#, TraditionalOrder -> False]& ], TraditionalForm]], "Output", { Background -> None, GraphicsBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics"}, DefaultAxesStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsAxes"], DefaultFrameStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsFrame"], DefaultFrameTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsFrameTicks"], DefaultTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsTicks"]}, Graphics3DBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics3D"}}}, CellSize -> {550, Automatic}, RenderingOptions -> { "3DRenderingMethod" -> "BSPTreeOrDepthBuffer"}]}], XMLElement[ "dataformats", {}, { "plaintext,minput,computabledata,formatteddata,formuladata"}]}], XMLElement["infos", {"count" -> "1"}, { XMLElement["info", {"text" -> "log(x) is the natural logarithm"}, { XMLElement[ "link", { "url" -> "http://reference.wolfram.com/language/ref/Log.html", "text" -> "Documentation", "title" -> "Mathematica"}, {}], XMLElement[ "link", { "url" -> "http://functions.wolfram.com/ElementaryFunctions/Log", "text" -> "Properties", "title" -> "Wolfram Functions Site"}, {}], XMLElement[ "link", { "url" -> "http://mathworld.wolfram.com/NaturalLogarithm.html", "text" -> "Definition", "title" -> "MathWorld"}, {}], XMLElement["cell", {"compressed" -> False, "string" -> True}, { Cell[ BoxData[ FormBox[ TemplateBox[{ RowBox[{"log", "(", "x", ")"}], "\" \"", "\"is the natural logarithm\""}, "RowDefault"], TraditionalForm]], "Output", { Background -> None, GraphicsBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics"}, DefaultAxesStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsAxes"], DefaultFrameStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsFrame"], DefaultFrameTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsFrameTicks"], DefaultTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsTicks"]}, Graphics3DBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics3D"}}}, RenderingOptions -> { "3DRenderingMethod" -> "BSPTreeOrDepthBuffer"}]}]}]}]}], Typeset`pod2$$ = XMLElement[ "pod", {"title" -> "Alternate forms assuming \[Alpha] and \[Rho] are positive", "scanner" -> "Simplification", "id" -> "AlternateFormAssumingAllVariablesAreRealAndPositive", "position" -> "200", "error" -> "false", "numsubpods" -> "2"}, { XMLElement["subpod", {"title" -> ""}, { XMLElement[ "minput", {}, { "Simplify[PowerExpand[Sqrt[-Log[1 - \[Rho]]] <= \[Alpha] <= \ Sqrt[-Log[\[Rho]]]]]"}], XMLElement["cell", {"compressed" -> False, "string" -> True}, { Cell[ BoxData[ FormBox[ RowBox[{ RowBox[{"\[ImaginaryI]", " ", SqrtBox[ RowBox[{"log", "(", RowBox[{"1", "-", "\[Rho]"}], ")"}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"-", "1"}], ")"}], TemplateBox[{ FractionBox[ RowBox[{"arg", "(", RowBox[{"log", "(", RowBox[{"1", "-", "\[Rho]"}], ")"}], ")"}], RowBox[{"2", " ", "\[Pi]"}]]}, "Ceiling"]]}], "\[LessEqual]", "\[Alpha]", "\[LessEqual]", RowBox[{"\[ImaginaryI]", " ", SqrtBox[ RowBox[{"log", "(", "\[Rho]", ")"}]], " ", SuperscriptBox[ RowBox[{"(", RowBox[{"-", "1"}], ")"}], TemplateBox[{ FractionBox[ RowBox[{"arg", "(", RowBox[{"log", "(", "\[Rho]", ")"}], ")"}], RowBox[{"2", " ", "\[Pi]"}]]}, "Ceiling"]]}]}], TraditionalForm]], "Output", { Background -> None, GraphicsBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics"}, DefaultAxesStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsAxes"], DefaultFrameStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsFrame"], DefaultFrameTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsFrameTicks"], DefaultTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsTicks"]}, Graphics3DBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics3D"}}}, CellSize -> {550, Automatic}, RenderingOptions -> { "3DRenderingMethod" -> "BSPTreeOrDepthBuffer"}]}], XMLElement[ "dataformats", {}, { "plaintext,minput,moutput,computabledata,formatteddata,formuladata"}]}\ ], XMLElement["subpod", {"title" -> ""}, { XMLElement[ "minput", {}, { "PowerExpand[Sqrt[-Log[1 - \[Rho]]] <= \[Alpha] <= \ Sqrt[-Log[\[Rho]]], Assumptions -> {}]"}], XMLElement["cell", {"compressed" -> False, "string" -> True}, { Cell[ BoxData[ FormBox[ RowBox[{ RowBox[{"\[ImaginaryI]", " ", SqrtBox[ RowBox[{"log", "(", RowBox[{"1", "-", "\[Rho]"}], ")"}]], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Pi]", " ", TemplateBox[{ RowBox[{"-", FractionBox[ RowBox[{"arg", "(", RowBox[{"log", "(", RowBox[{"1", "-", "\[Rho]"}], ")"}], ")"}], RowBox[{"2", " ", "\[Pi]"}]]}]}, "Floor"]}]]}], "\[LessEqual]", "\[Alpha]", "\[LessEqual]", RowBox[{"\[ImaginaryI]", " ", SqrtBox[ RowBox[{"log", "(", "\[Rho]", ")"}]], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"\[ImaginaryI]", " ", "\[Pi]", " ", TemplateBox[{ RowBox[{"-", FractionBox[ RowBox[{"arg", "(", RowBox[{"log", "(", "\[Rho]", ")"}], ")"}], RowBox[{"2", " ", "\[Pi]"}]]}]}, "Floor"]}]]}]}], TraditionalForm]], "Output", { Background -> None, GraphicsBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics"}, DefaultAxesStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsAxes"], DefaultFrameStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsFrame"], DefaultFrameTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsFrameTicks"], DefaultTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsTicks"]}, Graphics3DBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics3D"}}}, CellSize -> {550, Automatic}, RenderingOptions -> { "3DRenderingMethod" -> "BSPTreeOrDepthBuffer"}]}], XMLElement[ "dataformats", {}, { "plaintext,minput,moutput,computabledata,formatteddata,formuladata"}]}\ ], XMLElement["infos", {"count" -> "3"}, { XMLElement["info", {"text" -> "arg(z) is the complex argument"}, { XMLElement[ "link", { "url" -> "http://reference.wolfram.com/language/ref/Arg.html", "text" -> "Documentation", "title" -> "Mathematica"}, {}], XMLElement[ "link", { "url" -> "http://functions.wolfram.com/ComplexComponents/Arg", "text" -> "Properties", "title" -> "Wolfram Functions Site"}, {}], XMLElement[ "link", { "url" -> "http://mathworld.wolfram.com/ComplexArgument.html", "text" -> "Definition", "title" -> "MathWorld"}, {}], XMLElement["cell", {"compressed" -> False, "string" -> True}, { Cell[ BoxData[ FormBox[ TemplateBox[{ RowBox[{"arg", "(", "z", ")"}], "\" \"", "\"is the complex argument\""}, "RowDefault"], TraditionalForm]], "Output", { Background -> None, GraphicsBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics"}, DefaultAxesStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsAxes"], DefaultFrameStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsFrame"], DefaultFrameTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsFrameTicks"], DefaultTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsTicks"]}, Graphics3DBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics3D"}}}, RenderingOptions -> { "3DRenderingMethod" -> "BSPTreeOrDepthBuffer"}]}]}], XMLElement[ "info", { "text" -> "\[LeftCeiling]x\[RightCeiling] is the ceiling function"}, { XMLElement[ "link", { "url" -> "http://reference.wolfram.com/language/ref/Ceiling.html", "text" -> "Documentation", "title" -> "Mathematica"}, {}], XMLElement[ "link", { "url" -> "http://functions.wolfram.com/IntegerFunctions/Ceiling", "text" -> "Properties", "title" -> "Wolfram Functions Site"}, {}], XMLElement[ "link", { "url" -> "http://mathworld.wolfram.com/CeilingFunction.html", "text" -> "Definition", "title" -> "MathWorld"}, {}], XMLElement["cell", {"compressed" -> False, "string" -> True}, { Cell[ BoxData[ FormBox[ TemplateBox[{ TemplateBox[{"x"}, "Ceiling"], "\" \"", "\"is the ceiling function\""}, "RowDefault"], TraditionalForm]], "Output", { Background -> None, GraphicsBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics"}, DefaultAxesStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsAxes"], DefaultFrameStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsFrame"], DefaultFrameTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsFrameTicks"], DefaultTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsTicks"]}, Graphics3DBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics3D"}}}, RenderingOptions -> { "3DRenderingMethod" -> "BSPTreeOrDepthBuffer"}]}]}], XMLElement[ "info", { "text" -> "\[LeftFloor]x\[RightFloor] is the floor function"}, { XMLElement[ "link", { "url" -> "http://reference.wolfram.com/language/ref/Floor.html", "text" -> "Documentation", "title" -> "Mathematica"}, {}], XMLElement[ "link", { "url" -> "http://functions.wolfram.com/IntegerFunctions/Floor", "text" -> "Properties", "title" -> "Wolfram Functions Site"}, {}], XMLElement[ "link", { "url" -> "http://mathworld.wolfram.com/FloorFunction.html", "text" -> "Definition", "title" -> "MathWorld"}, {}], XMLElement["cell", {"compressed" -> False, "string" -> True}, { Cell[ BoxData[ FormBox[ TemplateBox[{ TemplateBox[{"x"}, "Floor"], "\" \"", "\"is the floor function\""}, "RowDefault"], TraditionalForm]], "Output", { Background -> None, GraphicsBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics"}, DefaultAxesStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsAxes"], DefaultFrameStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsFrame"], DefaultFrameTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsFrameTicks"], DefaultTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsTicks"]}, Graphics3DBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics3D"}}}, RenderingOptions -> { "3DRenderingMethod" -> "BSPTreeOrDepthBuffer"}]}]}]}]}], Typeset`pod3$$, Typeset`pod4$$, Typeset`pod5$$, Typeset`pod6$$, Typeset`pod7$$, Typeset`pod8$$, Typeset`pod9$$, Typeset`pod10$$, Typeset`pod11$$, Typeset`pod12$$, Typeset`pod13$$, Typeset`pod14$$, Typeset`pod15$$, Typeset`pod16$$, Typeset`pod17$$, Typeset`pod18$$, Typeset`pod19$$, Typeset`pod20$$, Typeset`pod21$$, Typeset`pod22$$, Typeset`pod23$$, Typeset`pod24$$, Typeset`pod25$$, Typeset`pod26$$, Typeset`pod27$$, Typeset`pod28$$, Typeset`pod29$$, Typeset`pod30$$, Typeset`pod31$$, Typeset`pod32$$, Typeset`aux1$$ = { True, False, {False}, True}, Typeset`aux2$$ = { True, False, {False, False}, True}, Typeset`aux3$$ = { True, False, {False}, True}, Typeset`aux4$$ = {True, False, {False}, True}, Typeset`aux5$$ = {True, False, {False}, True}, Typeset`aux6$$ = { True, False, {False}, True}, Typeset`aux7$$ = {True, False, {False}, True}, Typeset`aux8$$ = {True, False, {False}, True}, Typeset`aux9$$ = { True, False, {False}, True}, Typeset`aux10$$ = { True, False, {False}, True}, Typeset`aux11$$ = { True, False, {False}, True}, Typeset`aux12$$ = { True, False, {False}, True}, Typeset`aux13$$ = { True, False, {False}, True}, Typeset`aux14$$ = { True, False, {False}, True}, Typeset`aux15$$ = { True, False, {False}, True}, Typeset`aux16$$ = { True, False, {False}, True}, Typeset`aux17$$ = { True, False, {False}, True}, Typeset`aux18$$ = { True, False, {False}, True}, Typeset`aux19$$ = { True, False, {False}, True}, Typeset`aux20$$ = { True, False, {False}, True}, Typeset`aux21$$ = { True, False, {False}, True}, Typeset`aux22$$ = { True, False, {False}, True}, Typeset`aux23$$ = { True, False, {False}, True}, Typeset`aux24$$ = { True, False, {False}, True}, Typeset`aux25$$ = { True, False, {False}, True}, Typeset`aux26$$ = { True, False, {False}, True}, Typeset`aux27$$ = { True, False, {False}, True}, Typeset`aux28$$ = { True, False, {False}, True}, Typeset`aux29$$ = { True, False, {False}, True}, Typeset`aux30$$ = { True, False, {False}, True}, Typeset`aux31$$ = { True, False, {False}, True}, Typeset`aux32$$ = { True, False, {False}, True}, Typeset`asyncpods$$ = {}, Typeset`nonpods$$ = {}, Typeset`initdone$$ = True, Typeset`queryinfo$$ = {{ "success" -> "true", "error" -> "false", "numpods" -> "2", "datatypes" -> "Math", "timedout" -> "Reduce", "timedoutpods" -> "", "timing" -> "2.785", "parsetiming" -> "0.5640000000000001", "parsetimedout" -> "false", "recalculate" -> "http://www4c.wolframalpha.com/api/v2/recalc.jsp?id=\ MSPa239215ebdfhed47h0c090000612bdi6b820635ea&redisFailed=true&s=25", "id" -> "MSPa239315ebdfhed47h0c0900004dca63c39fgb32g0", "host" -> "http://www4c.wolframalpha.com", "server" -> "25", "related" -> "http://www4c.wolframalpha.com/api/v2/relatedQueries.jsp?id=\ MSPa239415ebdfhed47h0c0900004b4c05d8a498fgcg&redisFailed=true&s=25", "version" -> "2.6"}, { "success" -> "true", "error" -> "false", "numpods" -> "0", "datatypes" -> "Math", "timedout" -> "", "timedoutpods" -> "", "timing" -> "1.806", "parsetiming" -> "0.", "parsetimedout" -> "false", "recalculate" -> "", "id" -> "", "host" -> "http://www4c.wolframalpha.com", "server" -> "25", "related" -> "", "version" -> "2.6"}}, Typeset`sessioninfo$$ = { "TimeZone" -> 8., "Date" -> {2017, 11, 16, 3, 22, 3.4385381`8.288948821790955}, "Line" -> 36, "SessionID" -> 24589202992260183938}, Typeset`showpods$$ = {1, 2}, Typeset`failedpods$$ = {3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32}, Typeset`chosen$$ = {}, Typeset`open$$ = False, Typeset`newq$$ = "\\sqrt{-\\ln (1-\\rho)} \\leq \\alpha \\leq \\sqrt{-\\ln \\rho}"}, DynamicBox[ToBoxes[ AlphaIntegration`FormatAlphaResults[ Dynamic[{ 2, {Typeset`pod1$$, Typeset`pod2$$, Typeset`pod3$$, Typeset`pod4$$, Typeset`pod5$$, Typeset`pod6$$, Typeset`pod7$$, Typeset`pod8$$, Typeset`pod9$$, Typeset`pod10$$, Typeset`pod11$$, Typeset`pod12$$, Typeset`pod13$$, Typeset`pod14$$, Typeset`pod15$$, Typeset`pod16$$, Typeset`pod17$$, Typeset`pod18$$, Typeset`pod19$$, Typeset`pod20$$, Typeset`pod21$$, Typeset`pod22$$, Typeset`pod23$$, Typeset`pod24$$, Typeset`pod25$$, Typeset`pod26$$, Typeset`pod27$$, Typeset`pod28$$, Typeset`pod29$$, Typeset`pod30$$, Typeset`pod31$$, Typeset`pod32$$}, { Typeset`aux1$$, Typeset`aux2$$, Typeset`aux3$$, Typeset`aux4$$, Typeset`aux5$$, Typeset`aux6$$, Typeset`aux7$$, Typeset`aux8$$, Typeset`aux9$$, Typeset`aux10$$, Typeset`aux11$$, Typeset`aux12$$, Typeset`aux13$$, Typeset`aux14$$, Typeset`aux15$$, Typeset`aux16$$, Typeset`aux17$$, Typeset`aux18$$, Typeset`aux19$$, Typeset`aux20$$, Typeset`aux21$$, Typeset`aux22$$, Typeset`aux23$$, Typeset`aux24$$, Typeset`aux25$$, Typeset`aux26$$, Typeset`aux27$$, Typeset`aux28$$, Typeset`aux29$$, Typeset`aux30$$, Typeset`aux31$$, Typeset`aux32$$}, Typeset`chosen$$, Typeset`open$$, Typeset`elements$$, Typeset`q$$, Typeset`opts$$, Typeset`nonpods$$, Typeset`queryinfo$$, Typeset`sessioninfo$$, Typeset`showpods$$, Typeset`failedpods$$, Typeset`newq$$}]], StandardForm], ImageSizeCache->{1802., {550., 577.}}, TrackedSymbols:>{Typeset`showpods$$, Typeset`failedpods$$}], DynamicModuleValues:>{}, Initialization:>If[ Not[Typeset`initdone$$], Null; AlphaIntegration`DoAsyncInitialization[ Hold[{ 2, {Typeset`pod1$$, Typeset`pod2$$, Typeset`pod3$$, Typeset`pod4$$, Typeset`pod5$$, Typeset`pod6$$, Typeset`pod7$$, Typeset`pod8$$, Typeset`pod9$$, Typeset`pod10$$, Typeset`pod11$$, Typeset`pod12$$, Typeset`pod13$$, Typeset`pod14$$, Typeset`pod15$$, Typeset`pod16$$, Typeset`pod17$$, Typeset`pod18$$, Typeset`pod19$$, Typeset`pod20$$, Typeset`pod21$$, Typeset`pod22$$, Typeset`pod23$$, Typeset`pod24$$, Typeset`pod25$$, Typeset`pod26$$, Typeset`pod27$$, Typeset`pod28$$, Typeset`pod29$$, Typeset`pod30$$, Typeset`pod31$$, Typeset`pod32$$}, { Typeset`aux1$$, Typeset`aux2$$, Typeset`aux3$$, Typeset`aux4$$, Typeset`aux5$$, Typeset`aux6$$, Typeset`aux7$$, Typeset`aux8$$, Typeset`aux9$$, Typeset`aux10$$, Typeset`aux11$$, Typeset`aux12$$, Typeset`aux13$$, Typeset`aux14$$, Typeset`aux15$$, Typeset`aux16$$, Typeset`aux17$$, Typeset`aux18$$, Typeset`aux19$$, Typeset`aux20$$, Typeset`aux21$$, Typeset`aux22$$, Typeset`aux23$$, Typeset`aux24$$, Typeset`aux25$$, Typeset`aux26$$, Typeset`aux27$$, Typeset`aux28$$, Typeset`aux29$$, Typeset`aux30$$, Typeset`aux31$$, Typeset`aux32$$}, Typeset`chosen$$, Typeset`open$$, Typeset`elements$$, Typeset`q$$, Typeset`opts$$, Typeset`nonpods$$, Typeset`queryinfo$$, Typeset`sessioninfo$$, Typeset`showpods$$, Typeset`failedpods$$, Typeset`newq$$, "http://www4c.wolframalpha.com/api/v2/recalc.jsp?id=\ MSPa239215ebdfhed47h0c090000612bdi6b820635ea&redisFailed=true&s=25", Typeset`asyncpods$$}]]; Typeset`asyncpods$$ = {}; Typeset`initdone$$ = True], SynchronousInitialization->False], BaseStyle->{Deployed -> True}, DeleteWithContents->True, Editable->False, SelectWithContents->True]], "Print", "WolframAlphaFullOutput", CellChangeTimes->{ 3.719762527112071*^9},ExpressionUUID->"90da5ab4-0b41-4738-b6da-\ b1950e9dc6d5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ FormBox[ RowBox[{ SqrtBox[ RowBox[{"-", RowBox[{"log", "(", RowBox[{"1", "-", "\[Rho]"}], ")"}]}]], "\[LessEqual]", "\[Alpha]", "\[LessEqual]", SqrtBox[ RowBox[{"-", RowBox[{"log", "(", "\[Rho]", ")"}]}]]}], TraditionalForm]], "Input",Expr\ essionUUID->"4fd49bb5-d649-4355-a32b-abc1037418d1"], Cell[BoxData[ RowBox[{ SqrtBox[ RowBox[{"-", RowBox[{"Log", "[", RowBox[{"1", "-", "\[Rho]"}], "]"}]}]], "\[LessEqual]", "\[Alpha]", "\[LessEqual]", SqrtBox[ RowBox[{"-", RowBox[{"Log", "[", "\[Rho]", "]"}]}]]}]], "Output", CellChangeTimes->{ 3.7197625543523493`*^9},ExpressionUUID->"97b27fe1-0906-4546-8a49-\ 0234ef4bc866"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Rho]", "=", "0.25"}]], "Input", CellChangeTimes->{{3.719762567367732*^9, 3.7197625742255006`*^9}, { 3.7197626790274987`*^9, 3.719762679200244*^9}},ExpressionUUID->"85b2dc7d-e642-408d-af41-\ 7f2958c153e1"], Cell[BoxData["0.25`"], "Output", CellChangeTimes->{3.7197625757264795`*^9, 3.71976268003446*^9},ExpressionUUID->"3e42aa3c-2756-4b56-b547-0b72b2de98ea"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ SqrtBox[ RowBox[{"-", RowBox[{"Log", "[", RowBox[{"1", "-", "\[Rho]"}], "]"}]}]], "\[LessEqual]", "\[Alpha]", "\[LessEqual]", SqrtBox[ RowBox[{"-", RowBox[{"Log", "[", "\[Rho]", "]"}]}]]}]], "Input",ExpressionUUID->\ "3e5f0c66-bf14-4b80-b6fc-f1f92689a0aa"], Cell[BoxData[ RowBox[{"0.5363600213026516`", "\[LessEqual]", "\[Alpha]", "\[LessEqual]", "1.1774100225154747`"}]], "Output", CellChangeTimes->{3.7197625822158504`*^9, 3.7197626825526524`*^9},ExpressionUUID->"75c0b93d-484d-4233-a6aa-\ 67cfd8685de5"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"NSolve", "[", RowBox[{ RowBox[{ "0.3245928459745012`", "\[LessEqual]", "\[Alpha]", "\[LessEqual]", "1.5174271293851462`"}], ",", RowBox[{"{", "\[Alpha]", "}"}]}], "]"}]], "Input", NumberMarks->False,ExpressionUUID->"1ae8fdd7-2b9b-47d1-858b-21bfad86bd58"], Cell[BoxData[ RowBox[{"{", RowBox[{"{", "}"}], "}"}]], "Output", CellChangeTimes->{ 3.719762603388073*^9},ExpressionUUID->"9054076c-d176-4f79-ba76-\ 8b847fed80df"] }, Open ]], Cell[BoxData["0.3245928459745012"], "Input", CellChangeTimes->{ 3.719762621190056*^9},ExpressionUUID->"573b5e89-b8e6-4cd4-8a14-\ f1aac0644ec8"], Cell[BoxData["1.5174271293851462`"], "Input",ExpressionUUID->"e8538c44-cf6f-4c18-bfac-c84bb39db7dd"], Cell[BoxData["0.5363600213026516`"], "Input",ExpressionUUID->"f7908907-5ce4-4e3e-8a21-d608985c75ea"], Cell[BoxData["1.1774100225154747`"], "Input", CellChangeTimes->{ 3.7197628032398005`*^9},ExpressionUUID->"94d1adee-d6ee-4474-8808-\ 0240dd9db6b1"], Cell[CellGroupData[{ Cell["\<\ -\\sigma \\leq (2\\alpha^2-1)e^{1-\\alpha^2}\\leq \\sigma \\quad \\& \\quad \ \\alpha \\leq \\sqrt{-\\ln \\rho},\\sigma=0.1\ \>", "WolframAlphaLong", CellChangeTimes->{{3.7197628485058174`*^9, 3.719762849283633*^9}, { 3.719763554632069*^9, 3.719763565644379*^9}},ExpressionUUID->"693131f2-3166-44a6-8e7a-\ 88deab6b8bf4"], Cell[BoxData[ NamespaceBox["WolframAlphaQueryResults", DynamicModuleBox[{Typeset`q$$ = "-\\sigma \\leq (2\\alpha^2-1)e^{1-\\alpha^2}\\leq \\sigma \\quad \\& \ \\quad \\alpha \\leq \\sqrt{-\\ln \\rho},\\sigma=0.1", Typeset`opts$$ = { AppearanceElements -> { "Warnings", "Assumptions", "Brand", "Pods", "PodMenus", "Unsuccessful", "Sources"}, Asynchronous -> All, TimeConstraint -> {30, Automatic, Automatic, Automatic}, Method -> { "Formats" -> {"cell", "minput", "msound", "dataformats"}, "Server" -> "http://api.wolframalpha.com/v1/"}}, Typeset`elements$$ = { "Warnings", "Assumptions", "Brand", "Pods", "PodMenus", "Unsuccessful", "Sources"}, Typeset`pod1$$ = XMLElement[ "pod", {"title" -> "Input", "scanner" -> "Identity", "id" -> "Input", "position" -> "100", "error" -> "false", "numsubpods" -> "1"}, { XMLElement["subpod", {"title" -> ""}, { XMLElement[ "minput", {}, {"-\[Sigma] <= (2 \[Alpha]^2 - 1) E^(1 - \[Alpha]^2)"}], XMLElement["cell", {"compressed" -> False, "string" -> True}, { Cell[ BoxData[ FormBox[ TagBox[ RowBox[{ RowBox[{"-", "\[Sigma]"}], "\[LessEqual]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}], "-", "1"}], ")"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", SuperscriptBox["\[Alpha]", "2"]}]]}]}], PolynomialForm[#, TraditionalOrder -> False]& ], TraditionalForm]], "Output", { Background -> None, GraphicsBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics"}, DefaultAxesStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsAxes"], DefaultFrameStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsFrame"], DefaultFrameTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsFrameTicks"], DefaultTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsTicks"]}, Graphics3DBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics3D"}}}, CellSize -> {550, Automatic}, RenderingOptions -> { "3DRenderingMethod" -> "BSPTreeOrDepthBuffer"}]}], XMLElement[ "dataformats", {}, { "plaintext,minput,computabledata,formatteddata,formuladata"}]}]}], Typeset`pod2$$ = XMLElement[ "pod", {"title" -> "Inequality plot", "scanner" -> "Inequality2D", "id" -> "InequalityPlot", "position" -> "200", "error" -> "false", "numsubpods" -> "1"}, { XMLElement["subpod", {"title" -> ""}, { XMLElement[ "minput", {}, { "RegionPlot[E^(1 - \[Alpha]^2) (-1 + 2 \[Alpha]^2) + \[Sigma] >= 0, {\ \[Alpha], -6, 6}, {\[Sigma], -2.5, 4}]"}], XMLElement["cell", {"compressed" -> True, "string" -> False}, { Cell[ BoxData[ FormBox[ GraphicsBox[ GraphicsComplexBox[CompressedData[" 1:eJxlnXd8T9f/x5OI2CRGjFZstXfVPh97FiWoUetrr9pVq7baqtRWVXsrsTkf o7VHCGJnSEgEGUTsX7+fc57vPL6fX//p4+nce3PH83XPOfecz72Fen7fpreX h4dHXEYPj//+/9m9l+/Gznmlm4b/PPxQx0RdsGTWYVvXJgj7GVbwA7O8MOs7 V4waklwrXtaHWR9mfZj1h2w+HdLHESfrw6wPsz58eOHdGc1Hv9FdPltzMczn iWwPZnsw24PZHrzNbE+Y7Teb/8PpTpciZfsw24fZPsz2YbYPz2xw0u/zHh/0 UK91Y7Z88VD+Hszfg/l78KbYlhf3DnwqPMuwgtkfmP2B2R94jNkfYfavxZPA fqv33ZT9g9k/mP2D2T+Y/YPZP5j9g9k/mP2DS40PbJm8wcPZalW23YWnXpT9 hdlfmP2F2V+Y/YXZX5j9hdlfmP2F2V+4sNlfB+x788yvXVd6OTNfjQ3IVeOA HA/M8cAcD8zxwBwPzPHAHA/M8cAcD8zxwBwPzPHA6c3xCDfM8neb2h9zOzNX /LVB1aIbVJvumSrMSpPK3fZ+k+VGen/hQT7LYgtmzSX8Y8cHZwblyCk8Y3vR DQfz5BD+9dOAKd4B2YXXttnTrXURP+EdG17XWlXCV3hkwrgqVztnFZ6/NP2L vn0yC2+uvWTLp6EZhU9GFuq1dFx64XuzdgaUn+EjnFy+5u1/FnoLy/W0LNfT slxPy3I9Lcv1tCzX07JcT8tyPS3L9bQs19OyXE/Lcj0ty/W0LNfT8nNzvMIh 5nwIHzbnS3itOZ/CM8z5Fh5krofwFnO9hFeZ6ym8wFxv4SnGB+FRxhfhfsYn 4c7GN+GWxkdh66s7O+d66D3Fyv8j/sL4C+MvjL8w/sL4C+MvjL8w/sL4C+Mv jL8w/sL4C+MvjL8w/sL4C+MvjL8w/sL4C+MvjL8w/sL4C+MvjL8w/sL4K8dj /ZXrYf2V62f9lett/YXxF8ZfGH9h/IXxF8ZfGH9h/IXx142dA1aUiVkz+7r4 C+MvjL8w/sL4C+MvjL8w/sL4C+MvjL8w/sL4C+MvjL8w/sL4C+MvjL8w/sL4 C+MvjL8w/sL4C+MvjL8w/sL4C+OvHI/1V66H9Veun/VXrrf1F8ZfGH9h/IXx F8ZfGH9h/IXxF8ZfN3bO3/fjm60f7oq/MP7C+AvjL4y/MP7C+AvjL4y/MP7C +AvjL4y/MP7C+AvjL4y/MP7C+AvjL4y/MP7C+AvjL4y/MP7C+AvjL4y/MP7K 8Vh/5XpYf+X6WX/lelt/YfyF8RfGXxh/YfyF8RfGXxh/Yfx1Y2fHvpHTOleL EH9h/IXxF8ZfGH9h/IXxF8ZfGH9h/IXxF8ZfGH9h/IXxF8ZfGH9h/IXxF8Zf GH/hrFMn78/+W6Rw/BQXKxi/YfyG8RvGbxi/YfyG8RvGbxi/5Xit33K9rN9y fa3f4oP1G8ZvGL9h/IbxG8ZvGL9h/IbxG8ZvN3YOfJlhXviwaPEbxm8Yv2H8 hvEbxm8Yv2H8hvEbxm8Yv2H8hvEbxm8Yv2H8hvEbxm8Yv2H8hvEbxm8Yv2H8 hvEbxm8Yv2H8hvEbxm8Yv2H8luO1fsv1sn7L9bV+iw/Wbxi/YfyG8RvGbxi/ YfyG8RvGbxi/3dg5YXKFJX23xYrfMH7D+A3jN4zfMH7D+A3jN4zfMH7D+A3j N4zfMH7D+A3jN4zfMH7D+A3jN4zfMH7D+A3jN4zfMH7D+A3jN4zfMH7D+A3j txyv9Vuul/Vbrq/1W3ywfsP4DeM3jN8wfsP4DeM3jN8wfsP47cbOBVk7rH72 6Ln4DeM3jN8wfsP4DeM3jN8wfsP4DeM3jN8wfsP4DeM3jN8wfsP4DeM3jN8w fsP4DeM3jN8wfsP4DeM3jN8wfsP4DeM3jN8wfsvxWr/lelm/5fpav8UH6zeM 3zB+w/gN4zeM3zB+w/gN4zeM327sDL50/Fr1BQniN4zfMH7D+A3jN4zfMH7D +A3jN4zfMH7D+A3jN4zfMH7D+A3jN4zfMH7D+A3jN4zfMH7D+A3jN4zfMH7D +A3jN4zfMH7D+C3Ha/2W62X9lutr/RYfrN8wfsP4DeM3jN8wfsP4DeM3jN8w fruxs1POazffb0sSv2H8hvEbxm8Yv2H8hvEbxm8Yv2H8hvEbxm8Yv2H8hvEb xm8Yv2H8hvEbxm8Yv2H8hvEbxm8Yv2H8hvEbxm8Yv2H8hvEbxm85Xuu3XC/r t1xf67f4YP2G8RvGbxi/YfyG8RvGbxi/YfyG8duNnZGdou7os6/Ebxi/YfyG 8RvGbxi/YfyG8RvGbxi/YfyG8RvGbxi/YfyG8RvGbxi/YfyG8RvGbxi/YfyG 8RvGbxi/YfyG8RvGbxi/YfyG8VuO1/ot18v6LdfX+i0+WL9h/IbxG8ZvGL9h /IbxG8ZvGL9h/HZj56A/Uh5MiXotfsP4DeM3jN8wfsP4DeM3jN8wfsP4DeM3 jN8wfsP4DeM3jN8wfsP4DeM3jN8wfsP4DeM3jN8wfsP4DeM3jN8wfsP4DeM3 jN9yvNZvuV7Wb7m+1m/xwfoN4zeM3zB+w/gN4zeM3zB+w/gN47cbO189zhTZ 0Out+A3jN4zfMH7D+A3jN4zfMH7D+A3jN4zfMH7D+A3jN4zfMH7D+A3jN4zf MH7D+A3jN4zfMH7D+A3jN4zfMH7D+A3jN4zfMH7L8Vq/5XpZv+X6Wr/FB+s3 jN8wfsP4DeM3jN8wfsP4DeM3jN9u7JxYrsDj9AXei98wfsP4DeM3jN8wfsP4 DeM3jN8wfsP4DeM3jN8wfsP4DeM3jN8wfsP4DeM3jN8wfsOxVfvVjZx0S3in YQXjP4z/MP7D+A/jP4z/MP7D+A/jP4z/cj6s/3I9rf9y/a3/4ov1H8Z/GP9h /IfxH8Z/GP9h/IfxH8Z/N3amG1Xp6YWaH8V/GP9h/IfxH8Z/GP9h/IfxH8Z/ GP9h/IfxH8Z/GP9h/IfxH8Z/GP9h/IfxH8Z/GP9h/IfxH8Z/GP9h/IfxH8Z/ GP9h/IfxH8Z/GP/lfFj/5Xpa/+X6W//FF+s/jP8w/sP4D+M/jP8w/sP4D+M/ jP9u7Dx7f90Pjct4OPAfxn8Y/2H8h/Efxn8Y/2H8h/Efxn8Y/2H8h/Efxn8Y /2H8h/Efxn8Y/2H8h/Efxn8Y/2H8h/Efxn8Y/2H8h/Efxn8Y/2H8h/Efxn85 H9Z/uZ7Wf7n+1n/xxfoP4z+M/zD+w/gP4z+M/zD+w/gP478bO7NM3v5mcw1P 8R/Gfxj/YfyH8R/Gfxj/YfyH8R/Gfxj/YfyH8R/Gfxj/YfyH8R/Gfxj/YfyH 8R/Gfxj/YfyH8R/Gfxj/YfyH8R/Gfxj/YfyH8R/Gfzkf1n+5ntZ/uf7Wf/HF +g/jP4z/MP7D+A/jP4z/MP7D+A/jvxs72xTdPy5jUy/xH8Z/GP9h/IfxH8Z/ GP9h/IfxH8Z/GP9h/IfxH8Z/GP9h/IfxH8Z/GP9h/IfxH8Z/GP9h/IfxH8Z/ GP9h/IfxH8Z/GP9h/IfxH8Z/OR/Wf7me1n+5/tZ/8cX6D+M/jP8w/sP4D+M/ jP8w/sP4D+O/GzuXntEfBnZII/7D+A/jP4z/MP7D+A/jP4z/MP7D+A/jP4z/ MP7D+A/jP4z/MP7D+A/jP4z/MP7D+A/jP4z/MP7D+A/jP4z/MP7D+A/jP4z/ MP7D+C/nw/ov19P6L9ff+i++WP9h/IfxH8Z/GP9h/IfxH8Z/GP9h/Hdj570B 53661Ntb/IfxH8Z/GP9h/IfxH8Z/GP9h/IfxH8Z/GP9h/IfxH8Z/GP9h/Ifx H8Z/GP9h/IfxH8Z/GP9h/IfxH8Z/GP9h/IfxH8Z/GP9h/IfxX86H9V+up/Vf rr/1X3yx/sP4D+M/jP8w/sP4D+M/jP8w/sP478bOQlmve5YfmVb8h/Efxn8Y /2H8h/Efxn8Y/2H8h/Efxn8Y/2H8h/Efxn8Y/2H8h/Efxn8Y/2H8h/Efxn/4 wZovO0xrr4XjVrtYweQDJh8w+YDJh2zf5gMmHzD5gMkHTD5g8gGTDzlfNh9y vW0+xA+bD/HJ5gMmHzD5gMkHTD5g8gGTD5h8wOQDJh9u7Oyz597UhVN8JB8w +YDJB0w+YPIBkw+YfMDkAyYfMPmAyQdMPmDyAZMPmHzA5AMmHzD5gMkHTD5g 8gGTD5h8wOQDJh8w+YDJB0w+YPIh27f5gMkHTD5g8gGTD5h8wORDzpfNh1xv mw/xw+ZDfLL5gMkHTD5g8gGTD5h8wOQDJh8w+YDJhxs7twVGp01cmE7yAZMP mHzA5AMmHzD5gMkHTD5g8gGTD5h8wOQDJh8w+YDJB0w+YPIBkw+YfMDkAyYf MPmAyQdMPmDyAZMPmHzA5AMmH7J9mw+YfMDkAyYfMPmAyQdMPuR82XzI9bb5 ED9sPsQnmw+YfMDkAyYfMPmAyQdMPmDyAZMPmHy4sTP+9YuZbX9PL/mAyQdM PmDyAZMPmHzA5AMmHzD5gMkHTD5g8gGTD5h8wOQDJh8w+YDJB0w+YPIBkw+Y fMDkAyYfMPmAyQdMPmDyAZMP2b7NB0w+YPIBkw+YfMDkAyYfcr5sPuR623yI HzYf4pPNB0w+YPIBkw+YfMDkAyYfMPmAyQdMPtzY+eXKNxmCdmSQfMDkAyYf MPmAyQdMPmDyAZMPmHzA5AMmHzD5gMkHTD5g8gGTD5h8wOQDJh8w+YDJB0w+ YPIBkw+YfMDkAyYfMPmAyYds3+YDJh8w+YDJB0w+YPIBkw85XzYfcr1tPsQP mw/xyeYDJh8w+YDJB0w+YPIBkw+YfMDkAyYfbuwcWyfNXP+jGSUfMPmAyQdM PmDyAZMPmHzA5AMmHzD5gMkHTD5g8gGTD5h8wOQDJh8w+YDJB0w+YPIBkw+Y fMDkAyYfMPmAyQdMPmDyIdu3+YDJB0w+YPIBkw+YfMDkQ86XzYdcb5sP8cPm Q3yy+YDJB0w+YPIBkw+YfMDkAyYfMPmAyYcbO3V45qxjzmeSfMDkAyYfMPmA yQdMPmDyAZMPmHzA5AMmHzD5gMkHTD5g8gGTD5h8wOQDJh8w+YDJB0w+YPIB kw+YfMDkAyYfMPmAyYds3+YDJh8w+YDJB0w+YPIBkw85XzYfcr1tPsQPmw/x yeYDJh8w+YDJB0w+YPIBkw+YfMDkAyYfbuz0nu6/8HZoZskHTD5g8gGTD5h8 wOQDJh8w+YDJB0w+YPIBkw+YfMDkAyYfMPmAyQdMPmDyAZMPmHzA5AMmHzD5 gMkHTD5g8gGTD5h8yPZtPmDyAZMPmHzA5AMmHzD5kPNl8yHX2+ZD/LD5EJ9s PmDyAZMPmHzA5AMmHzD5gMkHTD5g8uHGzqYlCmav+TiL5AMmHzD5gMkHTD5g 8gGTD5h8wOQDJh8w+YDJB0w+YPIBkw+YfMDkAyYfsLxv2LK8b9gy+YDJB0w+ YPIBkw+YfMDkAyYfsLzvmO3zvmPL5AMmHzD5gMkHTD5g8iHny+ZDrrfNh/hh 8yE+2XzA5AMmHzD5gMkHTD5g8gGTD5h8wOTDjZ3zL5RcvOpVVskHLO9vsyzv b7Ms72+zLO9vsyzvb7Ms72+zLO9vsyzvb7Ms72+zLO9vsyzvb7Ms72+zLO9v syzvb7Ms72+zLO9vsyzvb7Ms72+zLO9vsyzvb7NMPmDyAZMPmHzA5AMmH7C8 H86yvB+O7fN+OMvyfjjL8n44y/J+OMvyfjjL8n44y/J+OM4X74fjevN+OPzg /XD4xPvhLMv74SzL++Esy/vhLMv74SzL++Esy/vhLMv74SzL++Esy/vh/ped fQ/kzfTJ01fyAZMPmHzA5AMmHzD5gMkHTD5g8gGTD5h8wOQDJh8w+YDJB0w+ YPIBkw+YfMDkAyYfMPmAyQdMPmDyAZMPmHzA5AMmH7J9mw+YfMDkAyYfMPmA yQdMPuR82XzI9bb5ED9sPsQnmw+YfMDkAyYfMPmAyQdMPmDyAZMPmHzAPq7r l6TnT1v0Ml+/JJ3iOv9JCg5xXZ/X+vXzW6Elv3uuR7qu5wvh9oYVfNosL8z6 UT32XP2zSKysD7M+zPowfsJrXT6809dDZp/NHxsl24PZHrzILC/M+ica93Iu 3R0u68OsD7M+jI/wENfyn3SNzuW65x53TXc1rOD8Ll89naWmnPzd3/e0zmXY Aadxnf80zszf13uT1Gq5vuM6/scaPmpYwe9c1yeNA45x+Z9W1pf3pbtt78rF yHqVxxxRbA8ON+s73JffnS/zyYrrLsvyMOXjv2ibUPT0LSmHKb9a8OqkZZ+F STlMvuGprvP1UPsPOxu4cnWiamxYwZSvOXD3266HX0o5THmJj8+7FLqVLOUw 5bsbePV4lJQi5TDlNebk6r3J952Uw+tcfEW/fHW4Vs2rXo6ShhVMeY3lp4+v epBGymHKJ9a67PgY5y3lMPdDmLzw/Q7yAFPO9znwF8ZfmPXdl+f7Gyzv/n0O 97zxPQ3Wh1kfJi8w9YV7Xvi+BHmBxX/7fQPx37KU2/fHS7n7+/PdfOZ93SwP U877kCmHKed9s5TD1H/uPvN+FXyCKef9FJTDlPP7fsphyvl9NOUwvjF/HN9g yplfSzlMOfMPKZf5nLY+x9cdrvrvrV57fFPLerli9BlX/ZiiS6U90iZtpaf6 oGEFrzHLK5Zf7Kov32ufp4PrvTkeoee76utnwkMNK3i6WV54t6s+9XCe+qNu rztLQ/Rmww54vKu+9HZeGVgzf/b5O/RIww74pev+F6Vzv5v7YXC+B+qmYQXv d/l7Vy875Lt+9Ky3aqxhBaf/6r8+nNE7rjcP673F27HQ5ccZBVO/etf5Kb5D 8wT5nggc5mpfJOueg8aW/+J0vNS/lMvzJMsBrvZLvGJ5zu9fzS+3P9vymZw/ zi88v+LkRkfvPpI8dx01bmiR53fk+yfwWFd75aO+Ua7foO7BoZJvyqn/YMqp 7yiH17nuJzFqT87PugR2vSrLU/+xPMzyFWK/Kl9oh9YXXeczt5P6Cibvoa7z 5y/lMOXRrvOdS8phyhNd94ucUg5T7uG6fjmkHKY8s6v9mF3KYcrzua6fn5TD lBd3XU9fKYcp7+s6X9mkHKZ8suv6ZZFymPKVrvObScphyoNc5zuDlMOUX3Gd 73RSDlN+xrCDcli+D2O2J+WwfF/G7I+Uw/J9GnM8Ug7L923M+ZBy+H+/t+Ir 5TDl/uZ6SDn8v99nyS7lMOXvXXnNIeXw/9ZHOaUcpjzC+Cjl8P9+/8VfymHK z5s8SDlMOfe38LZ5o+4ODhZOO6TPq8dht6U+i9iR/HNAu0fSPoMpf1kj/y/r 5z+Rcjij63yFq2oPiufwWR0jy/ucrb+81Nk4WR5m+WYDv/5s7s1nqfVxqaDW oZPiZXmY5cu9P+SXIX2C3I/PX0nK36bra+E2/ukK5xr3RurDk8El+g8o+0F+ vw9T3iJPrcFlm32ScpjyAbs2VRuzN/X3z3C4a/+uq1p5Si33fe3hkPZkmz2H b59I/b0ozPKTj1T+bHhaLwf1RSavxgW+LOzt8Pjvf44HR08/vHWy27vU+erc 78ua+73UDzKeYMuDTf0h9QH1L/UB9ad7fZBnzOJmP6VES7k7u9cXfK+M+nr8 +k51qq4LE6Z9R/3x+Mj8kdEZ70t7kfqC9iBMexGmvw4PNNtTbA+mfmL71Dds H3aa+kTTHoCpj6hvKGd71EdsD2b9WtliNq1qelaY+ortUZ5+nX+zhfrf+iop csGYlEkq16suX9w77S9cuMmf3iXO5xIuvzImfMSVnMK1npfXOiSHcNO6o1dl upNduP3ioz92eOgn/J/HXh3+fOQrHDZyUb8H17MJv81XoMjoB1mEc57Ydj9L TCbhcn2rLduQlEG4iet5QTph8zzh3/u75SqHJ45KSEkvnC9n4uGOzzMKewzp 7XEyMrNw9JnQhqVuZ01l340Nm/b1Fb59rFu/Dz38hC8OyDtnT5fswjr39R29 O+QQ/uv03Kt52+QU3jCsUdKlFrmElwV4+E9p7C8898KhalXr5Ra210eY++Oa eVGHtvU7L+1Bd3a/nyaFqWc9Nt2Qcnfmfkt/gvsr/QeYcu6vlMMlzP1Qc79l ee6vLA+z/MmiNXKfO/RUmPsv91fKpb9k779sD2b9kD3dC7RKeiHM/ZntUU57 2f1+nXXEh9/3DkqRcnfmfk5/h/s3zxfd7+e8L4f173XJVzx06Tth+vNsj/s9 24Mp535PORzgOh/X9fJGxUIffp/K1Afc7ymX5w+2PmB7MOs/iCnXqe7EVKa+ YHuU07+g/qB/wfdC37raFy913F/zKseGJeocrvZKojD9C5b3NuWK8qdmfWHq E54fUD/wvAB27/9TX9Bfo77g/g5TTv3B/ZTnATDfc1xg8iv3I/neoeVVJu/C 8v1Dy1vM/UFYvodoeb+5nwjL9xEtnzL3H2H5XqLlq+Z+JSzfT7R839zfhOV7 ipZjzf1QWL6vaPm5uX8Ky/cWuZ+Z+62wfH+R+sbcn4Xle4zUN+Z+LizfZ6S+ Mfd/YYepH+T+Kd8ntFzc1CfC8r1Cy5lN/SMs3y+0nGjqK2H5nqHlUFO/Ccv3 Dbn+pj4Ulu8d4o+pP4Xl+4eWG5r6Vli+h2i5mqmfheX7iJZLm/pcWL6XaDnA 1P/C8v1Ey36mvSAs31O0TP3C8yyY51cwz6u4X/N9Apj3uXO/5HkTzPMl7mfc b7mfc7+Fud9yP+N9NjDv9+B+xvMl7k+MH/D8A+b5R61F4Z3mDHwhz0N5vs94 AczzKdq3PH+kPcf4GLze5Yenk/Ybz+95nijfH7U82+VDGnm+RH+G59f0Z2Dq x5G/n/p1gH+i4n69Mdu0PT9fS5D7MUz7mvYv16OgR9HN1Te+VxwP90eeh9G+ lf23z09/c/nt5aS9Sv3hXj/AlHP+6Z/A9E+4Hjxv5vzzPBnm+R/Xg+e/nH/Y /Xu+lJv8ejq4PoyncD2E3b+Xa8tNftPI8z/GT+g/y3iK7T8zPvL/xktsOe0l ri/tJZh8cb25Puw/14P94fkY9Sf1K9efcupHyum/UM75o5y/R33J8VCfbv3r t0pfpN0r9SXl1KeUU19STn1KOfUl5dSnlFNfUk59Sjn1JeXUp5RTX1JOfUo5 9SXl1KeUU1/K8xhbn1JOfSnPe2x9Sjn1pTxPsvUp5dSXlFOfUs74PeXUp5RT f1JO/SrHb+tPeV5o61c5v7b+lOeRtn6V62frT3neaetXyqk/5XmqrV8pp/6U 5222fqWc+pNy6lfKqT8pp36lnPqTcupXyqk/Kad+pZz6k3LqV8qpPymnfqWc 8XG5/rZ/SDn3d77PJv3DjM98jjWKlHK+b0X57qU5stX/998pp/6lnP4X5dTH lNOfor/D+xGpD7Y2+mr7+5MfpZz6lnL6I5RT/1JO/4L2OPcbxlOoT2DuJ/PN /ctBfQJzPxvqul5ppb3YyXV9fKT9QnuB+oz6h/FO6kP3+p7+B/0T6hPOH9/v 4Pxx/2U8i+dtjL/CI1y8SyWObtfzzIG0cj64HzMfBD84HvzgeOT9tHZ/6d/Q PoFpn9AfYv9pP9F+gGk/0N5i/gD7w/g/zPln/zh+3p9A+4vjZX8YX+PvMd7F 8dDf4/yzvMxnsPUj42/u+WH8HaZ9yfXi78UmTcruF/1K+rdVqmRPDpiTIP3X BQH68YUC8eLLogmrl/jcTh0vv5wx4T9RHZ5L/3XWrmspK/q+kfFwrkelGj90 bpAnTu+OyxT+Z9hb8WtR3M5npa/GaffxcZYvNSjtw6Y/PZXzMaZ2tf0zu7+X /vCxqAzFkj0/yvNTnif6tPgQ825epIx/wWsWpxzd2ypWfMuT+WDLWTVjpL73 mJomx09RqePlh27H7CtYxtNJfX/8lyezP1V7IvV/js71Q+qUTyPtv9Z/NchQ qFHq+Drz44Y+bbJo+IYzdfDnzdvak3pd26jLrN1fIk/naO0+vk758M51Yh79 ECXj66M7FNo7fs0jGU+vUGPB15/ORmr38fKzObrczun5QPyGJ6b5+eCg1xFy f127N9PL0yUj5H6a71bI0uxdw+X+ufjt6prdF4XJ/fLzWpePd573UPJf7f0X e4o/uy/j8cPLn8n0uOU9GX9fdres361Nd2S8fd31pPU+r0JlfP3V6IH1FlZM ff/1ydszb7bsdUPuv/P7/N4jePh1ud9mdO1fsNxf6xZ6M/hymcsyHp+vcfUs 75PPyvh7RPq/En/+9aR2H18v89Qnzuds6vwQ+PTM9I821tsj+U0J9js87OQr 7cx2x+u7HxL1Ks8SS18uSlDOornzB/RI1M2mb/vQuNsbFTu7ytlqHeN0Su/L a38s+EwvmfToaN/EJ7ri8sHvqk95qgt+uFxs0u1IPTupWlPn1Q86rnn1ErUy h+lmRQuOjR3573nW3xx+kidMf7f+8ojiE2JU16e3T7w7F6pnnc0U1TbJw9m9 b+7+fwZc0d3GVw8PDPVy1m8VOj59+yPaf96Yr64fe6Sv1vw7fFPza2pZug3P Q65G6mbDPwW0OH5XtVyz923udJHqwqbL++s+/fc+02VzmG/zCPXn0orl/qOj 1PDxldfcSXtX5/x6vl+WQa9Vl2NPV+QveFuXiCmwt/n5Nyrjxz+Xdq9xS524 NffHmbneqzred29UWH5D5VjdNijz2w/Kv0yzTc8ir6t9JWvnvn/3k4p1Xa9T usXkGhMqNvR2eGd72GnD1CA1oPk3by41TevYW2v9gCxLk3T3WW2LreuXpDue 6+qVZ0kq5ymQOz5mTLzO0qxk4rB78bq5KVeUbzDrCx9PHJH1uyKvVXDCBEdM ngR9aG+LwuO+SdFXkzK8LVjnhU78/KcGz+u90N+2itt0qO9zHWJYwd5T2nrV r/xCja+790PxZs/1NrO+Yv3AKovbzLnzTK/dVStoVnysrmpYwW+3epxZVfSt zJ/73dn2xosF7/Sg6u3DKvpF/7v833VHHn+nh24MWP5gYZTuu+3bK4cn/Hvf rVmv3ofCMfoXs7xieeYL/NKqw49li4Xrbt1bdFWlP0h9dqdvuZMJ0z7qdosi R5X7655uef23PfMfxcrzvYumXFE+rOyLWe0yf1KOEz5HC7a8o09XO9uzc9QT 3S1bzrSz313XBys9z51m6RP92danlYu0CtYbTbminP57g9/beWWbEayzHkhu FTLFw8n4T6vPHrYIC/Z0zl7/6ti2g3/r8z//kW/cqcc6eu2tQYd/P63b9zji +DvosW46LHp82jWn9HZTrihvbNZ3sD79/2nZn41PGn9cH3vaI0eEh5c8P8ja oOTdxmHRusGq7Ad2+K3T8fVdrODuHwrM2bsvWj3f2X9Dvrwz9Zq7m7vc2JV6 /91W7kX1QkH+wgcnf5l78OFcwn+HjHt5UOcUvvbFyWDvv3MIPxybflfr89mF 4y61nLvqip/wm4JL+j8J8RXO/GT/vH77sgknVNUJYcezOIs2f/p88q2Px88F V9xw9Gwm57UDp4fkrFJW5y6ZvlyFyxmcK96tqzYlpKM+E5Thq4H/pHOWGfld yOl6Y/VXL078MGpBWuf9aoGeC3qu0MNCPvPvMj2ts/jEYYGDklfogde6eg7y jdZvivRPu7lekPrasIIX/hOX8Mv+KNWpSFTRnctOqP5mfQfrlzfbd7D9X1IK tSveMJ1jUGzXl037T9GfHlTf/U3hDI7EpWvKfP1db/0k71rPIr6ZHGVuFK2y 9E19PdLj8oMlabI4sqdrtyplZR59OHBfwbUpWR0cf+tbOSp7/+ArXH/apXYH h/kJV604c8ygQdmFSz5wrCzYN4fw53PeHgvpkVM4W7V9YT93ySXsFTU4Te0O /sKvf/mieMI3uYXpf8ANfr718ljX1PmSUyoGh0xeGK6Dsu4f0mpxjLp7c5Ff rc/CdeCrl+eOesap9pV7RkWEhulaiyfUDR7wTB0z5YryAovyXUtfLUxXip86 KbJTvHrba1Xl4IAwfa9RxXkea+OVpylXlPe6unKL57kH2uvPOb/OnJ2oShhW 8N7alS+U3fJAtZlRbMqbfYmqyg/bhzbqeF+XanjrtwOjXqqU0S5W8MS1rbrF 3b2nGp/2qPw02yu1b9B3j/uG3tWO4TeLLuuarMYYVjDj6UdCYjwynPjvOLFP 1eO5QqU9vK/T0wsFb17TW2ut8bo63sPxMU/Ynrz5runpO5fdG3HfwzHGlCvK 19ZfuH5Et6v6TmTHjvuCPB2VRmR5MKzCVb1q/ZTX1897OnqZckV5pzPTS/T5 6qKu5NF4RosgL0f4Py5W8J6d+T94fzyv8rSof/LQKy/HreBfp85feEbX+DLN gjkr0zi6GVZw6Iw75W89PCrzPZkPNmZUyKzs6xLleWeboKDrr4Ym6nWmPavd 539eHtawyZ7N8fp30/6VcsavX+ZvGT9wRer8bJjnc6y/27SPpT3MeH/PlO7/ NBkbreNM/SHzQdeZ9rGM/zDew/IzTPtX2sODzP1f6gfGf6g/Wpn6Q+oHX9O+ lfEfnm9+KnKtRov0t3VV0x7+f/NHKed558chU9YcWnBG3zPtYe3+PJH6wsfU Fw7qiz2mPe1geZ4nsj36NzkXhhT2yrBX5peuHP3s+hUPp65k2tfKff4q5TyP pP4IMvWHPN/MZNrr8vyS+d78PZ7fcX/geR3M8zmY53Ewz99gnrfBPF+DeZ4G 8/yM+oHnZdxPeT7mtemyz47fWmueh5V52nh4kcihWr4fPL1RqYhT8/Sqcl7B U/9Inb+e1fQ31P/Of/JxsPxis7w8z+V5Gdvn+Rh/n+dh7B/Pv9h/nndxfDzf gnmeBfP8CuZ5FczzKZjnUTDPn+Ce5v4u84ermf6NjM/8Zfo3Mj7zrenfyPdg GY/pUqT20KCrCfL8B37/ztX/kfnHVU3/R+YbrzD3UxmvuWj6MzJe08T0Z2S8 hvnByedG70iXzstxtqCrf6Pc5xtT3sqjy4nk12dlfvH5ma77n8wfHmXam5r2 ZsNG0/z6zHurC2+Kq/dH8hOdZ2C7y1kuxaq8NVV0xs7hus/H7ya27hypEutm ed64Zpjaavo7mv5OrOkPKfpDzX/77tz0gW/0gDrl1p+tEqdrG1bwl+bvKf5e xT97jX+75b1OP23s7NvpIrVPbq9nWdJ+0PuCi8x/mCNC+vuxZf/z6vzJSJ3Z sIKLmPUV6yf7u9ZXrN/P9Kc0/amq5vg0xzfe9L8U/a/7izsnbajk4Ywpk8ur xKkQfSbyi01+LT2c5R/Oyl8v+bq+YcodlGtT7qB8sumfOeiftdn/olBsDm+n t0+XL1PW7NAzD7ff19fP2xn9+ITjzPUduoPpvznovzUzyztY/iezvIPlrywP P5v3dKSe+WPHsJbl76k9hhU8yPTvNP27aeb6aa5f6wN+rf8ODtU9Z0TW313+ rQp4fbRJYMlQ7X10S5XEN29VTlOuKI9IdpUryhuZ/p+m/+fZWzk6Zj2pLxav +Kz3WG/HzF4uVvCjasXaX3+VLPPrLpv+maZ/9nZo63OTj8TL/LqMpr+n6O99 eF5356WW8WqK7lbriyXxenar/n/mqZn6e6jCpr+m6a/Vujui1OMZz3X6jauq dN4dp/N0Ckk4uD5FxjPXPXhdctzDFOUsvKbC1MPPdJNyh9NVnvtM+mshnc5/ lrbqM715UciuiWVi9NaGV3JdLRIn45tPlieke5wuTn8V2ORJxJIoXaB1b9+H a1J/71TC9O8U/bueV2pfyPv5e9XsN/+Cy+c80gNeHC8QFv1R5uNNNv0xTX8s sMjQ/jtPxsh8vOMNxqdkmhKjJqyb9DHzg1C96O5s71YHn8h87xWmv6bor7Uc /P3NUW2eqIaHfggq2/iybnRkzo8bjjyW8b5qpv+l6H8xv5v7I/O5YeZvw8zX hpmfLf0bOx8bZv41zHxrmPnVMPOpqT+YP11p4fsOhScpzXzprOtenSoX1l0z P3rq+nldt8/+Se/v3WNIlYvR8nuuiab/p+n/XbyRZceQf9tNnZO8G89Zukzm T7M+86XZPvOj+fvMh2b/mP/M/jPfGWZ+M8x8Zpj5yzDzlWHmJ8PMR4aZfwyP zhhUcNbjKPn92U7Tv9P07xq9udn66M4o3adkaf9tdU+qfwpkyVc1Y5T8/uxM 0/R+b6Me6byvHTO+O3JVta5UNLFhpUfy+7O4hp7f3S78SMf45qmU0jlURRT6 ovCaBREyf3lVt1w+tYdHqCdNNzadkPhIdWkY//fTU+Eyf7mX6U8p+lM/b+rQ Nee8cLWsTs2IJZti1M1+h/pXTwmT+cvVTP9K0b863/NhQPiWMLWxZMu8azs/ V63nTskys0yYzF++Z/pXiv4Vzyc7za5Q4sbMBBXSbWnPLSceyHjxC9Of0vSn 4g4emP11rgf6y1kfq+2alKS2J/5cbVrAffk93GHTn9L0pyZ++Ud7tfqeLui5 +6Ue8EqFXujQqdfYu/L7uOQPMbuH5r2rlw0ICKjZ9rVKada+fq+rt+X3cTnb Plu3/dfbesM3ZXYNr/lGRT/NdaBDq5syf7qMV8AJR9Gbat3E+l0GdPmgpuTo OG364BCZP100YdWjp++uq/WDNtb489Qndb154bw9B16T+dNO0z9T9M96JhfJ PmlzsLrWeOuydnk8HWNenopP1+CqzJ9OHu7qnyn6Z+HxJXJnPnxBfo9Xeper /6Xpf+2btOPM4RfndJsHX34fXCKNo0p0zUGfPP6R3+etS1P675fRp3XtoJoz T2Xyduz/2fU8Vd7vzXzs/ocjM5fRaWV+Hc/znoT5VYrslawn7C1eesKjBB3Q tG2uXuOT9eiHb845Lv1bXwxz1R9Sv2S+eDX7mhEJenWaO7uG1E3Uje59DC73 Nl7XGLa9dcCGBJ3lhas+0dQnjH/x995fcK2vWL+aWV+xfoipz6S+CjX7p9g/ X7N/iv0rYeofqa8ePGm+Zm/uFN2s/54qjW690J3M82LN8+Ldpn7S1E+DTH2X Oh/H1G+K+u2y2Z5ie+U/Lb7ZJudz7fNDUJkti57qUqZ+k/6knylXlN8xz6cV z6f3m/pPUf+VNfWb1H/DTX2mqc/8T3Z+3nRlnJ7SMOJk6f881r/s3XzsWqM4 nfVCnQ2Nukfruab+lPox5YRrecXyI8zyiuVzmOfjiufj5019q6hvy777YW1s jQ86/MriqD4zw/XEyNKXVgz8qA8Nr1A7ucx9PdzUn1K/tjw9KnlPwVgd1iTh 8PaT9/Xzr0/1W/g6Rh84Nbns+J/u6XHm+brm+fo9U99q6tsKZn3F+lfN+or1 O5n6XOrroWZ/FPuz29TXMj/+aHivVpt8YvSYuJJX6/re0INMfa2pr9eYckV5 L1N/y/wpj9Vx2UYWeaJ/+XxgzfFFL+iIVS5WcPc/FtWOrP5Y54taueV8uv16 makP5ffM9Uy5onynqQ8V9eHwftO+an4ltT3w05HzOZeGpLYH5mb1S4y4ndoe WN6jw5VyD1PbAxv3rd4+9lFqe2Bvukez/olJbQ84O5Xqm/1Fanvg0o6hDbq+ TG0P7PMcUj8wKbU9kObTxMBMH1Ofj3bbXcy/W4bM8ny0bO3af4TnzuhscGH4 zhVzA/WxjLu/LF8hvfOXtUXOjosbIfONDjaat63QpBW6y7LVn/465+08Xfv7 YaMD1+sSq5umiascrSMufF5scrnd6ltTf8rvtTOackV5CVN/KupP5iex/UCz fQfbzz77TuHjf/k4Tqwsuf7Ystn6kn+vCw8vpnc8XX79h95lBupReyrly3Ex o6NOz+a18lduoufefV/o+anU/vP9yDE5lxxK7T+Pb1bt2/kdUtsX379OGFuv TWr7ouf6bauTW6S2L9p909u5tXFq+6LJx4DIrvVS2xc1t4WmzVE7tX1R7ttF Jc58ldq+KJS2RfNxlVLbF6vN83Nh64uw95wjhSObROmIIVfj0t0+p6rELwj7 qnqUPhlW88Bn+S6ozaa9Ib9vj57tWl6xvL9ZXrF8ylzXeJZiPGuLaZ8o2ifR 41b09Zn+SKc7n/9227kharNvXNeOjR7pPd0f9Ujvc0tVMu0X+b38WbO8YvnZ ZnnF8mPNeJlivOyyae8o2jsehV3tHfn9wMhX/lkvRkVofX7Fxf5LI9TCDzsG 59wSoQ8UmDS8zY1Itd+Mr2nG1w6b9pGmfdTerK9Yf7hZX7H+WNN+kt8jHNy9 5vIyrwh9OWhHmpHNH6uZo/5Ol/55uO6ec32+d1seq42mPaVpT60wyyuW72+W Vyz/0rS35PcLFUL6Do+uGq7bfH5xunPSU/XEtLc07a3splxRPsS0v+T3CmMX dfn24dgwXSpz+Q/hgS/k+Qntry6mXFG+zLTHZL7mbtP+UrS/wv66r179c1+H fTpU/054khpq2mPyPoL1plxRXs+0xxTtsRajWrS6/PKufjB1RsLI2slqlWmf yfsKfE25oryqGf9UjH8eNu03Rftt7o22/0zseEcfLVS1+dHGKar1gA3HgvPd 0WP9bngErEhRR037TuZbtDbLK5bPaZZXLF/QjK8qxldD27jag4r2YOE4V3tQ fn8x+j9j2gWVuqWnLAvKvanUe+UsNLjmziE39dBJPXKOSP9BjTXjsZrx2H6m /ahpPy68cycpu0+o8it/8MHKwu9UDbM9xfamme0ptnfctDfl9xqJ13fMSc51 Q/cf0tar1oKPKvrSdceaMyF61nGfmWXjPqpAM/6rGf/tadqnmvbpfrO+Yv2t Zn3F+r4tXO1X+f1H4dJDFhVOe10PH1zpWr4+Ho61pv2qab9Gl3KVK8r3mfas /N6jeMEzHsVLB+tyg9e0nBXo6Ygt4GIFD5ra3ef1q0ta++5oEBfo5ehn2rvy vonEKa5yRXkt095VtHcZf/it9OSyE1akcRyNcrV/5X0UjEdQPtSMhyvGw0uZ 9rGifZxsxsc14+PP5wR2PHDuiK5zdts/Ld97O97PdrGCF/64p+XMyJc6//n6 F2ZlSdKr5wwN+PGv1PfLMN95+7oyMc0rJ+mzvk3bBLdP1HW82/0cnjZJ5hcz /vFy+O7YNwVSf79Sav70mjMnpW6P37f80u7z+6GlknQDMz9I5gsdNttXbP9z s76834b5Zaw/yey/Yv/5vSXjM112Vbk1qPwrmR+9wByfbI/fz3B898z8JZmv tMzMP0p9f4eZXyTjKcz37pKu8/e/HE99vsh4ylEzP0jmExUw7U9F+7NxUGKX NEtSf1+zy8w/kvlE/H5y50+d5kwbeV9+XxOQIzl3zd9C9RszHintnWKmvhX2 MeOXwpVM/Sycw4x3CitTnwsXNOOjwi1M/S9c1oynCnc07QXhGmb8VbiPaV8I NzbjtcIjTHtEONCM7wpPMu0X4ZNmPFg4yrR3pL033owfy/OgxaZ9JBxvxpud jDdPMO0pJ+2pdA9d49NOxqdvmPaXk/bXcjOe7WQ8O59przlpr2kz3u5gvD3I tC8dtC+zmfF5B+PzxUx71EF79IQZz3fQXu1g2q/CMWb8X9p37z662rvC3ma+ gLSvtpv2sfArM79A+JxpTws/MfMRhI+a9rfwXTN/QXiXaa8LXzbzHYTXmfa9 8AkzP0J4iekPCO8z8ymEfzb9B+FNZv6F8DjT3xAONPPd/t/vbe4UC57x49bT 6lsz/01+f5PdzH+T39+sMvPbNPPbjpv5bZr5bV3MfDT5/U0fMx9N5kdeNPWl pr7k94SMj8dXv9En2+Zb8nuc9CHjV2WpdEvmo34089fk+/b8Hmdr8fc1qubx cPQz89Hk9zjb33dq3TpdvDpzY8nMNpni9eZyweErjr1W0/+uUnvfd/E6vGDn FmtfvtGla1dLitgWqzNUbd/mhs87va1Gi19yr3isg025ojzmi6hNVV7F6pvz f78wIT5cXzCs4CG/6Rqb9n1SJTbUKrz1p1vaq0p0woKuns6njU95XmpyXrf6 J+He08FpnNvz/1W35vR9usPD7cX8mj7Wo3ofSY4sdVA3UodmftY7Uj8sn/9d Bc8wVcKwgru8Gx60cOpDVWv6gKktliSoJkX7/Pq27WV9JbDhrbYOL8dvY/P+ NnzSMV315cTe2aO8Het/dLGC/7j0ZYGhCzyc8x4NbxeX95o+l1Cza41WXs4x ua8EFfvphD5ozo/m/Bw1509z/t596To/ivMz0Ryv5njfVnYdr4PjrW6OT3F8 jc3xOzj+ZeZ4NMdzuYjreBTHs9zsr4P9PWH218H+lv/ixYQn//FxjMo35ExA 9oW6/cbVPxQdtEGdrXyxdK91aR3/B4RL3GM= "], {{{ EdgeForm[], Directive[ RGBColor[0.24720000000000014`, 0.24, 0.6], AbsoluteThickness[1], Opacity[0.3]], GraphicsGroupBox[{ PolygonBox[CompressedData[" 1:eJxNnQf81dP/x+/83M+95s/eeyRKVkZGJJnZO9KgZIasjJKdJCMiIorslcoo hCSrRGRLMiIje/R/P3u9zuP7fzw6nXPeZ97zfn7GPffzeX3X7XraQaeWCoXC tGUKhXLEX2aFQv8I2B6uFQoPRYhsYan4rxpxPcLQsN0UYZmwrRJh2bCtFOHG sOURLxnhq7BfGqES6f9lard0hGXcRwN7hCVcf1i0vSXCSlF3xf9X9+aa0itE WD5TfcZb2TF99A77vhFWiPBY1H80wnJh/znyP0VYM9JruA/6XjdXevUIZ0X5 gRFWj7COPwd9r5EpvTb1bVslwoYRVnPb86POERE2ijAoU91NIjR3O/rb1DF9 LBnjLox6v9DGfTCvzcK+XoTVwn51pv43oI9Irx9xywitbGP8bf7fOIMzpbeO 0No2xmzneti2tW2zCH9E/d8jbBzp4bFOt0VYN/K31jROmwg7RdjcY/4bZf9E 2DLSu3kc+r0+U3rXCDt6jrTZwnPcyPn1Pe/d/99cjnNfzPFIj0kfR0TYwfmj bGMuS8fajI35PRHhaNt2jnB7TfUPj9DJtl0YP+bWNuJjInT2HBmvi8dkLstG nxOi/bgIXW1rH+HYgtrSZkSU3RFh/ejv6cgPinBthGlhe41jIOxvRfxmhGGR fjfimRFGRPqdiGdEuD3SsyJ+L8JdHBOeL5/1g7C9H+HusE+P+G38EekPI54d YVSkP474owj3RvrziD+L8AA+j/k3i/BM5AdEX4e5341zpS+J8GmUfRJhTNS/ zGOy3nPC9gXHdtgvt431XjvarhXhuShrnmn9ropwZUHrzhpf7XVlna7x+uLP gbZ19jod5/UeXND6dovwRvT7eoSbo++5EX8Z4ZFIz4v4qwiPRfqbiL/G15H+ LuJvI4yN9HXuo3uEKzxf5vR9lM/Hj1FnQcQ/RJjAcR/xjxGegfeIf4vwQqR/ jXhhhEmR/jPiPyJMjvS/Ef8TYUqk/474rwgvR/rOGOPMCGdFuMtxnwgjHZ8d 4Z4I50Q4N8LdtpEfZdt5Ee6NcH6EvhFG20b+PtsuiPBLjPlzhOdi3DG2XRjh gQgXRbg4wkMR+kXoH+Fhx/j6Ecew8KhjWLvffdD+QffRz8cKxzfH62OuCyNP FMQEa9wik//HRnjSNlh4ylzAwnj7HhbG2Ub+cfdHXxNcDhfP+BiCiz2LhcKq EVaL8Hzkb4hwY4RJEa53/gXbborweoQRBfnktQi3R7gjwsQIQ9zmuYJYIf+i 2w2NMCXCrRFuizA1wnC3f9U28i9FuDnCLREmux35Nzwm/n/Z5cMivGkbLHzg 9cU/0wtiAv+/XRAT5GfYhv/fte/x8zu2wchb7o82M22j3nuuiz9nexz8/6Fj /P+RY/w/y3Vhp1DUGPT3vm3M9RV/DtblY7eDhU8c48M59je+/aIgFsh/aRv+ /8F+Yr3n2obPN89U//MIX9nGeXSeY1j4JsKz9tt39iX+/74gJuh3vm3kv3Y7 2nxWEK+wucDj47ef7Et89Y/XFD8sLIgDfP6rY1j4zTFM/eg+aP+p14AxfvF6 TfHY8AtnP3scyv4siFF4+bsgPhj7X48PF4sK4gB//Gcb+b/cjjZ/RJjmvjhW OI9yDi0W5UPY2TLS5QiVCLWimICFrCgWyedF2eBi+aJ8hn+WK8qv5KtFMUEb +pplRupFtYOLLTL5cJmw/a8oDmi/bFF28ksUxQ1r1iiqHfkVihoT/y9ZVDl+ W7EoGyysU5TPWMtVimLi2wgrF+Vv8pwnvjUjaxTFB9xx7vjOjKxUVH+0Wb0o G/XWLKoujKxb1Dj4c72iYrhYv6gYLtYqqi4slIpab46/tYuyMde+sSadI7SK sEFR7eBoo0j/bh9uWhR/+L95UUyQ36woG/5vbf/hqxZF2WBkk6KYoE3Lomwc x5sXFcPCFkXNDw62Mgv4c5uiOKDfrW0j38rtaNOsKF4ZY1uPj8+3L8p/+HP3 ovzEuk7L5P+dIuxcVBr/7+IYLrZzH7TfuKg1YIz145q2XoSlPFfWEs528Dhw sWtRXMJpu6K4Yez2Hh8WOhTFByzsYRv53dyONm09F/oaEV8+To5wSoS9fJ2B i32KYgguOhblVxjcryjfk9/fNng5qihf4rcDbIOdfd0HbQ60DY4OcgwXhxbF BOtxuNcd3x5ZFBP0e4Rt5A+JsKHbHO0x4eIw90H7TrbBRQ+vO37rbB/DxbFm hfxxtnHO6GpW4KKLbeS72QY7xxfFJVxc53q06+lx8NuG4c8NIrSJ9BuZuDgp wsn/j5ET3AfzO8bzZU6nuBx2TnWM305zDAtnmAMY7G0fkz/TNrjoYw7g4izb yJ9tG/cX5zjG/+c63jvC+eYAH55nG/m+tsHChUXxAQsX2Eb+Ittg4XTPl/ld bBssXBLhYPvzUnOADy9zDAuXO8b/VziGi37uA44GuA/ad7d/8M2VrgubVxfF Clxc47XG/wNtIz/INhgZXBQT+PVa28hf5f7o6/0IYyLcH+EDxw9EuMHzgJGh RfEHFzfZ3+SbBRcbRzgx0iPtM/zzdiZGhkW40X3Q5tZiEzu3OYaR24viAy5G eK1h4a6i+KDfO20jP9ztaHO3x4SRO9wH7e+xDUYejdDfvrq3KD5gYXRR3JC/ z7bzvQZ9zcIY2/p6XbDBy0NF8QEL1xd1XLFej3kc/Pm4Y7h4wjFcPOkYLh52 H7AwyvNlTmNdDi9POYaFcY7x4dP2PSxMKIoP8s/YBgvP2few8Kxt5CfaxnE/ yfGQCM875jO9aA7w4Qu2kZ9sGyy0CP9vxne9SL9kG7y8k8n/UyKM93yZ36tF 2WHhNXOAP183B/jwDcew8KZj/P+WY7iY6j5oP8193O65d7U/3nZd2JxRFCtw MdNrjf/fsY38u7bByKyimMD/79lGfrr7oy/uU7if5V52dlF8PBihTSmudRGW ivBpUfzBxScRHnH+M9tg5Fv7DP98bhu8fFQUZzDyhW2wM8cxjMw1H3Axz2sN C9+YD/r92jbyX7odbb7zmDDylfug/XzbYOR3+4z1XmA+YOGHorgh/6Nt8PKz +YCFn2wj/zzfxfmujQ9r4uLXCGuX1J66f3gcuPjTMb79yzGM/O0YRn4rqh/m 973ny5z+cTns/OsYdv5zDBfFkpjA/2yCTjcjpZJsMFIpiQn8Xy7JRr5akg1G spJizqO1kmLOo/WSmPgwQl6SjXyjJBu+hQ+YgBF4+diMLG1uYGSR58v8linJ BiP/K4kJWFi+JL/CwgolxfhzxZJiuFippBgWli2pD9ovV1IftB/J3lWErePY XbmkunC0akmMwsvqJfHBeq9Wko38GiXZ4GKtkljBr2uWZCO/Skn90RfXYe7R 1vAacdzAeusYe2HE60XdDUvyMQxuUBIv5DcqyQYvrUryJX7buCQb7KxfUj+0 aVaSDY42KSmGo01LYgVGWpTEB+u9eUlM0G/Lkmzkm5fUjjZbeEy42KykPmi/ pW2ws3NJPmO9tymJFRjZuiSGyLe2DUa2K4kbGNnWNvI7RFjC55QdfV6BkXVL Ot5+ibCLx4GLto7x7a6OYWQ3xzCyk/tgflt5vsypncthZ3fHsNPeMVzsWRIT +L9DSX4lv5dtMLJPSUzg/71tI7+vbTCyn2POAR0dr8M6ZPL/ARH2t43PemBJ dnx7cElMwMhBtpE/xDYY2cPzZX6H2gYjh5fEBCwcab/CwlGO8efRjuGik2NY OMx90P4I99Hcc+Qchj+OcV046lwSo/DSpSQ+WO/jbCPf1Ta46F4SK3DRzTby x7o/+jre5TBygmPY6Rlh+5J4OaUk/uDiZPub/Km2wci59hn+Ocd+JX9SSZzR pldJ1zPyp7kdTJ1VEhOs8dnmgPZ9bCPfuyTmYOp0tyN/nseEkTNcDmvn2wYj l3mt8dWFJfEBCxeUxA35HTIxclGE/uYALrbMxcrFEfq6P9r0K8lOvUtcF14u 9zj48wrHcHGlY7gY4Lpw1CL63zDCjuzz28Zcz/TnYF2ucjs4utoxHA2272Hh 2pL4IH+dbbBwm32GD4fYBguDzAFtrrcNXm5wDBdDI/QwC7dEONE+vNV+pd9h tpG/0e3g6JqS2GWM4R4fXu6w7/HhffYfvrrL/uNzj3QMF3c7hoXb3QftB3oN GOPOkvig/aXl8EWEQyKM8DiUjSqJLdi8tyReGXuMx8e3D5gJGLnfNvKj3Y42 93gu9HWz14Z12SAXI49E+MzxoxHGluRXGHzSvif/lG3w8rx9id8m2ZfknyiJ Ldo8XhKX5Me5HXw967VgvSfar7R/zjbyE0riD47Gux35FzwmXDztcvh60Ta4 eNPrjt9eiXBTSVy8VBIr+HyKbazHayUxASOv2gY7k90fbabaRr1prgunb3kc /Pa2Y3w73TGMvO66w72+rDnH4hu2Mddn/DlYlxluB1PvOIap90viAAZn2cfk P7ANLr60D/DbbNvg4r2SeKLNh7bBzvLBQOu459kmwqeRf9gcfO65PhZhjn1J v1/YRv79TPU/ifBuSZwxxlyPD0fzSuIG//9UEjf48Fv7GB9+55g1mO8YRr5y H7Sf6TVgjG9KYmKC58JawtnXHoeyH0riCb5+LIlRxv7Z48PLQvsYLn6xjfwC t6PN954LfV0ex+ehEQ6L8FvkXy6Jrz9K4gl2/imJD3z+d0lskf/XNnxeK8sf +PA/22D2r5I4o80i2+CLBxaI4atUFlswUimLD9YmK8sH9Fsty0a+WFY72qxW 1tqx9uWy+qB9XtZc4GvFshjCh7Mz+XbpsLXhN2h+o438MmXZ4aVeVjsYXLYs G+eSJcriD9b+V5YNppYrK4ajFcpii/FWKmtMfL5KWdzgz5XLspFfvqx2tGmU NSZjrFpWXT7b6mV9PpjaKea7Y4Qlw7ZWWb6EizXL4oz82mXZ8Pm6ZbECp+uU ZSO/Xlk22Fm/rBheNigrhqONzcTvETaK9K8l5ZuVZYOR5pH+037epCwb+U3L ssHLGmXNnfltVpYNplqWxRC8tCqLD7jYoqwYP2/pGEa2coyfW5TVB+03L6sP 2n+Uybc7R9jadWGqdVkMwdR2ZfEKI9vaRn572/B/m7L8gc93sI38Nu6v6jV4 xcfJLmWNC0eneXxsu5flY7hoVxYr5NvbBpv725f4rWNZviS/W1mc0WbXslgk v4fbwdc+ZR0DMLJfWWtN+31tI79nWczBYAe3I3+Ax4SLvVwOdwfaBjvHlOUz 1ptrOazACNf29Zzn3LFhWYwcWRYfsHC4bXB0kPujzRG2Ue8o14WjYz0OXHR2 jG+PcwwjR7sufP3p8xPnl062Mde9/TlYly5uB1NdHcNUDzOB/0+wX8n3tA1G zrQP8NuJtsHI8WWxRZtetsHISY5h59NMDJwa4XSz0DbCGfYl/fa2bXE+juld ObYj3b0s1hnjLI8PR2eXxQ3+71cWN/jwPPsYH57vmDXo6xhG+rgP2nfzGjDG uWZiT88FfuHsHI9D2YVl8QRfF5fFKGP39/jwMsA+hotLbCN/kdvR5gLPhb7Y G2DPlf3WK8piCF7aVWL8CP+LcI39jW8HmhXyg2yDzZvtP/w51L4hf3VZLNLm qrKYI3+t28HaDWaC9bjJ6077G20jf11ZLMLgYLcjf4vHhJchLoe1YbbByz1l MYQPh5uPkyPcVhY35HcOTk6J+PYId5Z17oCXO8qyw8+t7o82I2yj3l2uC0ej PA5+Hu0YXu51jD9Hui4MTnO/zOVu25jr9f4crMt9bgcjYxzD2sNmAt8+ZL+S f8Q2GHna644fHrUNZh8si0vaPGYbHD3uGHaeLIsnvkOMK+seBUYmRLjS/Y63 jfwTbkebB8o6BhjjGY8PO8+VxRPsTCmLFdh53n7Fzy84xp8vOmY9nnUftL/f a8AYk8riifbLB6+fRfx5hIkeh7KXyuIMpl4pizPGftXjw9FrZXGDP6baRv5l t6PNZM+Fvp6KcJnX5XX7EL7+sV+xzSiLD3w+vSy2yL9jGz7/2P7Ahx957ci/ XRZntHmrLBbJz3Q7uP6gLD7g4kOvC+1n20b+vbK4hMd33Y78Jx4Tjma5HE4/ tQ2OviuLIXz4RVmsPO71fdT5Obbh/3leF3j50jY4+sz90earCGNd72vXhaP5 Hgc/f+8YXn5wjD+/cV0YbJvpeH0jwre2Mdf3/TlYlwVuByM/Ooa1X8tiAt8u tF/J/2YbjBSDpTe99r/bBrO/lMUlbf6wDY7+dAw7f5fFExxcHPM8NcKuPARc 0Xzpd7dM6UUR/nI72vxc1jHAGKWKxoeFSkUMwdTSFfkbXmoVMYFv84pifF6v KMa35Yr6oP1PXgPGyCpicabnxHrCWbWicShboqI1hbWlKmKLsZepaHz45Trx idnhuoGN/JIVtaNNo6K50BfnC64zXA+Wq6gdjLB3wB4b+2KrVcQTjKxaETfk V6/IBgsbVrRe+GSDij4b+VUiPdesrVQRo/C4RkXt4GXditiCkfUr4oP261Vk I79WRccAbK5ZUTvyG1U0JuysXVE5zG5ckQ2+tqzIt/i8eUUMwcsmFXFGftOK bLDTsiJuOH9sVpENLppV1B9tWlRko97mFdX9N8JWFY0Ds1s7hp1tHOP/NeL7 +OoR5gR3R1b0GZjvarnmuUWk16noc7Aurd0O7rZ1DBc7VsQW/mxTEXPkd7IN XjpEWCHCihF2tg0WdqiIV9rsYhtMtXUM17tVxBYc7e57EBjZo6LzO/22t438 rm5Hm+0rYpox9vT4+H+fipiAo0Mr8jE+71gRT3Cxv2P8fIBj/L93hJXdfjuv AWPsVxGjq3sczo9wtq/HoeygivhgXQ+piDnGPszjw+wRFXGMPw63jfzBbkeb Az2Xtf35Of8y3lH2IYxc7fb0d1xFrMBU54p4It/FNtg5yZ+HNetlH5M/tiIu aXNMReyS7+p2rSL0qIgz+DqxIlZo39M28t0rYorjoJvbkT/ZY8LC8S6H31Ns g6lz7WN8fnpFbMHRaRXxR763bXB0ljmAnTNsg6lT3R9tzrSNen1cl/vc8zwO zJ7vGHYuiLCX/X+268Lj0V5vjuNzbGOuJ/hzsC4Xuh3cXeQYLgZUxBb+vKQi 5shfahu8XOsxOkW4zDZY6F8Rr7S53DaYusIxXF9VEVtwMLAiFjjWB1XECv1e Yxv5K92ONv0qYpoxBnt8/D+kIibg6Db7GJ/fWBFPcHGTY/w81DH+v8590P5i rwFj3FARo108DmsJZ9d7HMpuqYgP1vXWiphj7OEeH2bvqIhjmLrdNvLD3I42 N3su9HVnRZzBxV2OYWqkY1gbVRFD8HJPRZyRH20brD1mv/KZ7rUNpu52H7S5 zzbYGeMYXh6oiG+4ezhC34pYe7Qibuj3EdvI3+92tHncY+KrB90HzD5hG4xM tO/x81MVMQdfYytijvw42+BrQkU8wdF428g/bRuMPFsRW5xjvvJ4T0aY5HHg 63nH8PuCYzh60TEsPOc+Brp9f89pssth7SXHsPCyY3h5tSLO4GtKRfyRn2ob fp5WETf4/zXbyL9uGxy94RiW33QMU29XxBBMvWUb+em28SzkOxUxBDszbCM/ 0zY4esXzZX7v2gYXsyriCb4+qIgn2JntGF4+dAwvHznG/++5D9q/7z5o/4z9 g28+dl34+izCQxXx9UVFPMHX57aRn2MbLM+tiC38+qVt5D9xf7C2WTXuSSL+ K0KLquK/I3xTEWcwNb8inmDnu4p4Iv+9bcz3d/sY3/5gG3x96z5os8A2ePnR MVz/XBFzsLawIs7g67eKGKLfX20j/5Pb0eYPj4l/fnEftP/TNpiqVOVvfPtP RWy95s/5qvP/2gZriypiC6b+s408L/phg69SVTzB19cVHYesV7WqcWAqqyqG o1pVMezkVcX4v1xVH9PtgymeU72qcvhqVBXDyBJVxbC2dFVswdRSVTFHfpmq bLCzXKQ/NTvLVmXD/8tXZYOdFaqKYWrFqmI4WrkqbuBopaps5FepysY5Y7VI z/MarFqVjfzqVdngaMmq5sv81qjKBhdrVcUTfK1TFU+ws25VMbysV1UML+tX FeP/Navqg/ZrV9XH9x77Sftjg6rqwtdGVfEBX82q4gm+Nq7KRn6TqmywvGlV bMFR86ps5Desqj/6KlbFAhy0rIon+Lo20kdH6BRhy6p4gp0tquKJ/FZV2ehj p6p8jG+3tg2+WlXFJW22sQ1eWjuG6+2qYg7WdqiKM/jasSqG6LeNbeS3dTva 7Owx8c/27oP2u9gGU/tU5W98u1tVbMHRrlXxR373CP+rirU9qmILptrbRr6D bfC1V1U8wdcZHq9thH09Dkzt5xiOOjqGnf0d4/+93ccqbr+U53SAy+HrQMcw cpBjWDu0KrZg6pCqmCN/mG2wc0RV/oadw20jf6RtsHOU42b2OTEcHVMVN5ua g02cP9Y2zrvHVXXOhZ3OtpHvYtvmEQ72fJlfV9vgontVPMHXCVXxBDs9HMNL T8fwcqJj/N/NfdD+ePdB+z3tH3zTy3Xh6+Sq+ICvU6viCb5OsY38abbBcu+q 2MKvp9tG/iT3R18TIlwe4Qp/pn98Dj470u2qYuq8qniCnXOr4on8+bYx30vt Y3zb1zb4Osd90OYC2+DlQsdwfXFVzMFa/6o4g68BVTFEv5fYRv4it6PNZR4T //RzHx39mbDB1BD7G99eVRVbcHRlVfyRv9o2WLumKrZgaqBt5AfZBl+Dq+IJ vs6q6jjkuLze48DUDY7h6EbHsHOTY/x/nfs41j44xHMa6nL4utkxjNziGNZu q4otmLq1KubID7cNdu6wv2HndtvIj7ANdu50DFN3OYaju6viBo5G2kb+Hts4 Z4yOcKbXYJRt5O+L0KcqjoZ5vsxvjG1w8UBVPMHXQ1XxBDsPO4aXRxzDy6OO 8f/97oP2D7qP8z12W/vjMdeFryeq4gO+xlbFE3w9aRv5p2yD5fFVsQVH42wj /7j7o6/0nh7vZaX39Mg/WxVnMDWpKp5gZ2JVPJF/3jauUa/Zx/j2Bdvg6zn3 QZsXbYOXyY7h+uWqmIO1KVVxBl9Tq2KIfl+1jfxLbkebaR4T/7ziPmj/um0w Ncv+xrdvVcUWHL1ZFX/k37YN1mZUxRZMTbeN/Du2wde7VfEEX4s83hsR3vc4 MDU7wr1VcfShY9j5yDH+f8993OP2t3pOH7scvj5xDCOfOoa1L6piC6Y+r4o5 8nNsg5259jfsfGkb+a9sg515jmHqa8dw9G1V3MDRN7aR/842zrvfR3g6wjMR 5ttG/gfb4Ogzz5f5LbANLn6qiif4+qUqnmBnoWN4+dUxvPzmGP//6D5o/7P7 oP1M+wff/O668PVnVXzA199V8QRff9lG/h/bYPm/qtjCr//aRv4P90dfaCTw fjzvyfOudyfnS5k4g6lqJp5gp5KJJ/JZJhvzXTaTPge6HrVMNvgqZ+qDNnkm G7zUM8VwfYm1RCK5WEekrlvBxdohaIWg5YHGyNKZ9EAamdrB6YqZdEOWCvtl 1hKpFdQHuiBJEwT9DHQ00P5AC4S50i9p9EHQFEFDZHneJ7W2SGq/ovtIeiLo faAfsmomrY9ipuOQ9UIfZA23WSuTPshabrNOQXof9LGu8+h5oDOClsdymcbk M66ZqQ79D7Tex/oF1duwIK2Ma60n0qwg/ZKN/DkZA30P9D7QENn0/423qcvo C92Nlu6rlfP0vYXz12XSDdmqIC0Q7Bu5X7Q9tnZ/aHUkTZHWLlsnk30zr/tG 7hsdkVutx8F48Id+B9ohO3vsGzLphrT1GLsVpLNBv+2cb+l2bTzXnd0XIjSc g/AHc9ndbdAFWS+TdgdaHWiCoH/RLJNux6EFzQnti8PdN8dE0h050mVoi+zu z8w5gnsF7l82yHTsoCuCXgDviE/12F0KTVomxJ09r64um2nND7Qeks5Ie39m 6qKXgQYJ+jHdCtKS2TSTxsVr1slAb+JN64KgKzHD+iLoSrxtfRG0JtAiQaei Q0FaI2iKoC/xurVJ0Kp435oifb0G6Dmgz/CJNUXQiPjIeiFoRnxmjRA0I9Aa QVukf0HaIeiO9CtorQcUpD3BOl5WkJYEebQI0CbgvHOlx9skU5o1RUcEvYir vBYDnT/S86Kv2dY+ucBrdo3rsd6DnGetr3Ue7RLey2cNWVPSvKuPrglaI+hC fGV9EfQlvrTuCNoRX1trBL2Jb60pgn7EfGuKoAfxo/U50ID4wfoiaET8bE0R 9BR+s6YIuhILrTuCxsIf1hQZbkYGe95/WXcEvpLOyJ0F+fvugvQg8PE9zuP7 Uc7D1mjnz3Q7NDKSRgl9HW6f4CeYuNdtWFM0JdCXwPfoQiS9kPtdhu8fdFl/ +zNpkDzksr7ug36f8XHD/Vlb+/UY+xItBXQlNsuk2ZCYIP2EOUBbAs0IfPN8 QboPMDHOZZe77uPmYLzL4GCC86wpGhFP2/+8i4dmw/XuL+mFTHTZINelPb5/ wWMPdjv6goMXXcaaotOAXgMcvFxo0g4hnlwQB6+4DA64l00aJFNcBgdTXYbP 0HuYZl+xTo/ah295PHz/tvP4frrz+H6G83d6XvQ11HN50f5+x/Xw00zn8du7 zuNjtB+Sdgjxe/bxBy5LmiNJg2S2y5L+yIee98fOJz2Rj+23zwpNuhqfuqxl JvuT9vGcQpPWCPHn9vGXLhvjeb1rf891WdIW+cp+Qzfia/v4W+fx+XfOw8J8 5ye43Vz7+2v3NcCfh8/3fEF6EvO9pmhE/GCfowmRtEN+dBm+/9ll+JzvMUlH 5BeXveA+6Dc9n8pzdXCAfgJaErw/wzsLvKeA79GQSPoixH+Zg39dhk/QfkDz ASb+c9kbrvunOVjkMjhAU2KR1xR9CHQi8D+aEmg24GP6S3ohxJTBDXVpj+/R kWBs/EM7+oIDdCEoY43RdUCrAf+j/ZC0Q4jRjkBTA/tn9j36EuhNbJlJi2Tp orhA54EyfI/+w3Kuh7YAGgT4D+0IxsOf6EWQhwN0I8jDAXoS5PE986IveGUu zBs+0I6gHr7n/UTy+GwNv6+Iz9GNSNohxGhD4Ht0JChLmiNJg4SYsqQ/Qhnf b9GNII/v0YFADwKfof2QdDWIKcOfaEdQhu/Rk0haI8SU4Xt0JCiDNebFvPE9 OhKb2X9oM7S0z9CLaGXfb+k8/t7Kefy/tfNwQ7sW5qaV++JYxSf/M4vbuA0c oAvR2v5GUyJph2znMljYwWWvZ9If2bEoHRHsS5qz1u436Snw/nzSU7jcTKDP 0NYcoB2R9EWIdzMT7V2GP9B26Gg+9nDZ8q67q1np4DKY2NN5OOD91b3se3Qk 9rHv6S/pi+znstVcd08zcYDHXsPt9jYTB7qMNUbLoZN9jyZE0gshPth8HOay TbwWSXfkcJfBxZEuw/foPRxlP7FOu9h/x3o8/NnZeTg4znk46OJ8C8+LvpIG CvOGj66uh++7OY/PujuPz9GNSHohxMfb9z1d9mYmnZFeRemOYIcDjnP0ItCP 4Lg/xfmkLXKKfYb2Q9IXOc1l+LO3y/A9ehJJd+QMl+H7s1zW2vPqbt/3cVnS GTnbPkMv4lz78Hzn8Xdf5/H/Bc53cLs+xSaNEvpK2jp8Jti50G3gAF2Ii+xv NCX6e637uQwWBrgsaY4kDZJLXba/+6DfTe3/Ix3QkeD4QSOAd7K/MQdoRyRN EWJ0G2BikMvQ/Bhqn8HHtS472nXReoCVwS6DieuchwN0JIZ4jdGRuMG+p8+k L3KTy7q6Lu2nZ9IWucW+ucF9wQRaEMO8xmg53GPfowmR9EKI0YuAiztchu/R lEi6IyNcBhd3uQzfo/cwstikSfGG/Tfa4+HPe52Hg/uch4MxzvfxvOgraaAw b/i43/Xw/QPO47MHncf36EY8Yt+jCfGQff+Yy5LOSNIdedxlSXOEMs6VY51P 2iJj7TO0H5K+yDiX4c8JLsP3sJJ0R552Gb5/1mUXeV4P2vfPuSzpjEy0z9CL eN4+fNF5/D3Zefz/kvOD3Y6+kkYJfZ1pn+AnNEioD0NwgCbEFK8xOhJJL2Sq y2BhmsuS5kjSIHndZTMz6Zi8UmzSU+Dd+KO8Xld6fLQZ3jYHaEQkTRHiGWbi XZfhDzQc0HeAj/dcdrfr0heszHIZTLzvPBygIfGB1xgNiQ/te/pL+iLEaEkk TZ/3zcLnHvtBt5ttJr5wGWuMhsN8+x4diaQXQoxOxDivxVz7Ho2IpDsyz2Vw 8Y3L8D0aEd/aT6zTW/bfDx4Pfy5wHg5+dB4OfnL+Oc+LvpIGCvOGj59dD30R 0nCA3shWmbQR8Dd6EUkvhPhXs/CHy5LOSNId+dNlSXOEMhj5x/mkLfKPPxMa EUlf5D+X4Ut0IxaZBfQiku4IMWUwgV4EZWhvoI2y0EygyUBZ0hlBnwF/oguB ZgT+Qx+CPP5EN4I8vkcrAs0IGKIdfSWNEvpKejpvmhc0JWgDH2hCoA3B+qIj kfRCiClj7dGUoCxpjiQNEmLK4JE+6Jf36rb2d57X/b2Ee1sYQZsBjQZ8i0ZE 0hQhRlMCPtCNoAw/oeGAvgOsoCNBGWxRl77gBk0JyuAGTQnycIGGBDoNrC96 EWhJwAL9JX0RYsrgibq0hwM0Hxh7m0z9/GJG0IHY2OuLhgN6DjCBjkTSCyFG JwIm0JTY1EygEZF0R4g3MxPoPLQ0E2hEtCo1aVIcZQ629nj4chvn8W1r52Fi W+fLnhd9JQ2UZmZlO9eDFZ5p394ctHEef6MbkfRCiHc0E7u4LOmMJN2Rti5L miOUwUg755O2SDv7Hr2IpC/S3mX4soPLYAFdiqQ7sqfLYGJvly3lebUxE/u4 LOmM7GvfoyGBdsS2mdLrmgN0IQ6w7w9yfk2326fUpFFCX0X7BD/By8FuAx9o QRzi9UVTIumFHOYy1v4IlyXNkaRBcqTLNnQf9Ju0FXgfPmkrjPTY6DQcY9+i HZE0RYjRiICPri7DT+g5oP8AK91c1sp16QtuursMbo53HibQTOjh9UU7gncg dnJ/SS/kJJclXRLaw8GpHnsHt6MvGDnNZawveg5oO8AEmhBJO4QYPYjdvRaU wUSfUpMGyVkug4mzXQYTaD+wn9LS69TJ/uzr8fDlBc7j2wud3z5TGj729rzo a1fPhXmjMYLuCMzACu/gX2wO+juPv9GNSNohxGhBwMJlLkuaI0mD5HKXJf0R ymDkKueTnshV/kzoRSRdjYEuw5eDXAYL6FIkrZFrXQYT17nsYM+LecPEEJcl bZHr7Xv0Im6y/252Hn/e4jy+H+Z8N7cbYg5udF9JT4fPAS+3ug18oAVxm9cX TYmkHXK7y1j7ES6DA46JpCNyp8tOdh/0m3SvON/ABNoJHD9oBPAON+9y41u0 I5K+CDEaEfAxxmX4CR0GNB1g5X6XneO6aD7AzQMua5MpDUMwgY7EI15fdCMe Mwv0l/RCnnAZujLokjxsDp7y2P3cjr5gZJzLWF90G14wE+hIJO0Q4vFm4hmX wQRaDkmD5FmXwcREl8EEWhGTSk36FN/an5M9Hr58yXmY4N32l83EFOev87zo 6wrPhXnDyquuBytTnYeD15zH3+hCJO0Q4mlm4U2XJc2RpEHylsuS/ghlMDLD +aQnMsMsoA+RdDVmugxfvucyWEDbIWmNzHIZTHzgsls9L+YNE7Ndhp4I2g9w gC/Rhfik1KQ186l9+bnz+PYL52How9RXJp2Rj0s6difZT7Ayx23gCO0IdCRg Aq2IpB3ylctY969dNsH+TDoi37jsCfdBv9y7c23m+Dnb68KawQd6Ed/br+hC JH0R4gX2+c8uw2/oLqC/ADe/uGyi69IXDC10GQyhG4F+BHygEYF2AkygEfGn 15v+kr7I3y57xXVpDx//eexX3Y6+4GORy/ATOg3oNcAH+/JJL4QYXQlY4f6V MhhByyHpjhBTBiucSyiDEXQhOL8863Wab1+iD8F46IiQxscfZtIZWaosPnin Hm0I2GJe9JU0UBaZG965px7coPFAPmmLkMeHaD4kfRFidCTgAD0HyuAADYek L0JMGRygh0AZXKCLQB5e0Iggz+dBNyJpdRBTxmdFi4IyfIsuRNIXIaYMRtB2 oAx2mRfzhhX0HihL2iLoReBL9B/QhsC36ECQx5doQZDHt+g8kE8aJfQFQ7RD byJp63xnVtB/oA0coSOBFgRMoB2RtEaIW3jd0YXYvNykM5J0R4gpg0H6oF/+ Lg3PiPBsCoxs4+8/PPvBsyI8T4Ff0YJI+iLE25rFHVyG39Bg2N3ctHFZ5rpo UKDvgh2ePs6kabKT+UCjYRczgYbEruaA/pK+SDuXLe26O5uPPTz2sm7X1nx0 cBl+QrPhQPOBdkTSBSHe06zs4zIYQdshaY3s6zJY6egyGEEjYv9ykybF+fbl wR4P3x7iPH5FC+JQ83G48+t4XvS1sufCvNdy3x3N0BFuAzdoPxxpf6PbkLRM iDuVm3RGjrWv0FjoWW7SHOls31P3aDPRxWVJT4Q834HRiuhmLtCfON7+pL+k NdLDZVu6Lu2bu2/m2szz5TPASi/PCd+gw3C2/YnmQ9KYIT7VvuztsqRF0st+ PsNln2XSJUFXAj7OdBm8nOV8e4/Tx+t7rsdO2iJJa+Q8l+3uurRHv4RxYRet At5T511ymLjAvocJNCIutC/RfEhaJsQX28+XuIy1R0sB7QVYGeCyjq5LX3Bz qcvgBl2Ey8wB73tf4XVFC+Iqrzf9JU2RgS47zHVpDyPXeuwj3I6+YGWwy/AN mg3DzAGfOWmBEF9nH9/gMhhByyHpi9zoMlgZ6jIYQf8BbYh9vU4X2Je3eTzW eLjzO2VKoyuCX3mHnnfpe3pe9NXZc2HesDLC9WDnTufh5i7n4QCthqQLQjzS Ph7lsqQtkrRGRrsMVu5zWdINIQ8v9zsPB+hMJK2OB1zG53zIZfgV3YakNfKw y/D5oy7r7Xkxb9h5zGXwgf4D2hBwgN7DWPt1nPP4ebzz+HWC80mLhL7g6Un3 tbX9hA9h4Wm3gR30ItCPgBU0H5LWyHMug5VJLks6I0l35HmXXe0+6Dfpj1AP PtCH4FhK74fzHi5+Rbch6YgQT7HPX3MZfkNfIWl+EKOtMNR1kx4JMdoTsDXN 7WEC3Ya3vL60Szoi0122SyatkcTi624PH+96bFhE3wG9Cfh4z2X4iXfJ0V6A D7Qakn4GMXoNsDLbZTCBtgO6D7DyoctGuy79PuByymDlE7fBl194PHw7x3n8 +qXz8PWp2yQNC7QCHvEcKbvD68HngSc0HtB6gKd5zuNDNBmSfgnxt+UmbZH5 Xm80GNBVSDojlE1wXXQiYGWBy5KGyAIzgc7ET2YCzYdf7D/6S/oiv7rsedel /Xj3/bX9/4fnAStoO/xpP6MzgOYCuiH/2K/tMumG/GdfovmAdkPSH6Gvce57 njmgLXoRN3p+zOs12/7yWqIRgWYETDEmug9wis4B80jaIklrhJgy+KMu7fEH fTAnrq8cD0PNBboQdbfnHX/e/4cJNB6SjggxOg74Hs0HylgnNBmS5gcxugqw Rd2kR0KMlgR8oAtBe5hAswHtBtaCdklHhJgyWERPIekGEdMe/3OcMzaMou9A PThCh4Ey/Mx762gBwAc6DUk/gxitBlhB74EyeEHXAX0HOED/gTJYpC79wgjl lMETmhC0gQ/ej2c8fIweA3l8jk4DeThDC4I2HLtobrDuMMgcKeMYQw+Dz4Pv 0YSgPSygC9HC/kPHIOmXEG9RadIWoYy+0V7YqdKkM0IZ+iLoibQyQ61dljRE Wpsb/L+dj+02ZqLh/pK+yI4uq7ou7dEuQYMCzRP8vYvnAQvoOrS1j9EZ2Mcc oM/Qzn5t7zx+3sP5pD9CXxwr9N/S/NEOnYgPPB6fexnbdvU6ohXRwTwxJroP sLaf55G0RZLWSEeXrey6e5mtDp7TtdZMZX8DJtCFOMBsoflwkPlAsyFpmRAf YrYOdxmfAX2F48zQES5b13UPNitHugw+jnIeztBlQC8CttBvOMZ80F/SFOns smauS3vWr6vHbu529AUT3VyGX9FeQIsBntBqSFogxOg1wFMPl8ENmg9JX6Sn y2Cil8tgCh2IkypNOhToA8DRaR4Pvk53Hm56O4/vz3B+B8+LvrbwXOgPRs50 PXx/lvOw0Md5eEKnIemCEJ9tv57nMvyNtkPfSpPmyHlm4UKXJd0Q8jB0sfOw g2ZC0uro5zL4usRl8IK2Q9IaGeAyuLnMZe08L+YNB5e7DI7QE0D3AVbQakBb AD4GOg8f1ziPvwc5n7RI6Oswt6Ov7ewT/AQj17oNXKD5gDYEHKHzkLRGhrgM 1m5wWdIZSbojN7qsk/ug36SbwLvtaCF87DwMof+AFgSsoO2QtEyIb/X8bncZ vkSTYbTnfofLergufcHHCJfBy53OJz0R9CDgCc0GtBvOdH9JX2SUy5IWyZ32 x30e+3S3G1lp0hC5z77knXXeXYcbtBmSpsgD/tywhc4DGhAwhM5D0hR5xGXw 9JjL4AjtBzQfjvc6oZ0BO095PLgZ5zysjHcef09wvr/nRV/neC7MGy6edj2Y eMZ5GHnWeRhCpyHplxCj+5C0RSZVmvREkr7ICy6DlckuSxoi5JOGCHl4QTMh 6XO84jKYetVlfGa0HZKmyFSXsR7TXHa158W84eB1lyU9EXQfYAWtBt73h4/p zsPHDOfx9zvOJ10S+hrudvTV3XNiLjAy023gAs0HtCHgCJ2HpC8yy2Ww9oHL krZI0hqZ7bKR7oN+X/Q9LPcpcIT2A8cP7/3zTjbvZsMK2g5JU4QYPQg4+tJl +BJNBjQW4Gmuyx52XbQk4OMrl8HLPOdhC80H9CDgCc0GtBuedn9JX2S+y8a6 7jz7Y4HHHud231SaNEQW2JdoL6CfATdoMyRNEWI0IGBqoctgCJ2HpCnyq8vg 6XeXwRHaD39UmrQn0AeAnX88Htz86zys/Oc8/l7k/BTPi74mei4/mgte+ltk JtB8IA8j6DyQhyF0GpJ+CTG6D0lbhLKkJ5L0RYgpgxX0HihLGiLkk4YIeXhB MyHpcxBTBlPoKFAGK+g9JE0RYsrQFEHbAd0HjgHmxbzhAL0HypKeCLoPsIJW A9oC8IFmA3n4QPOBPP5G84F80iWhL/ijHX29bJ/8bkbQhaANXKD5gDYEHKHz kPRFiCmDNbQUKEvaIklrhJgy2KIP+uX+nesr196HzPinZgj9B7QgYAVth6Qp QoweBPND72ET+xJNBjQWmDv6D5TBHHXpCz7Qf6AsafGQhy30EdCDgCc0G1qZ FfpL+iLElMEldVvYH9t4bLik3ebVJg2RbexL3llva27QZkiaIsTbmq0dXAZD 6DwkTZE2Lmv4XLKjeUL7gfMLxx/rtIEZ2s3jwQ36DO3MSnvn8fcezi/ledFX xXNpbZ46uB5M7Ok8jOzlPAyh05D0S4j3rjZpi+xbbdITSfoiHV0GKwe4LGmI HFBt0hA50NygmZD0OQ52GUwd6jI+M9oOSVPkMJexHke4bGXPay9zcKTLkp4I ug+wglYDug/wcazz8NHZefx9nPNJl4S+NnE7+uLcs4HnAiNd3AYu0HxAGwKO 0HlI+iLdXQZrJ7gsaYskrZEeLtvcfXSpNmmO9LTfejkPUyc5Dy/oOiTtEGI0 IOCmt8tYF3QYkrYHMXoLbVw3aZAQoysBK2e4PQyh04BeQwe3S5oi57kMFtGQ SPoNZ7p90gphbBhFOwJdCTi6yGX4k/f5eK8PdtBzSFogxOg1wNAlLoMPtBzQ dICnAS7b13Xp90CXUwZTl7sNrFzt8eBjoPP4+BrnYe4Kt0m6FWgLHOo5Ura7 14PPAyOD3B4+rnU+aYgkTRHiIdUmPZEb7EM0Fm6vNmmLUHas66ITATdDXZb0 RMjDCjoPaEDAB9oJaCj0cn9JR2S4y5L+CO2Pcd+D7e8RnkfSELnTvkVvAf0F OECn4W77dZTz+Hm080mLhL46uW/W4nS3Q5eAv510fKbnl06z7S6vI7oQ6ESc 6zHRgIC1hzyPpCeS9EUedtk5rkv7Pu4D7YkeXg/WCCYesy9ph2YE2gwwgq5D 0g4hRgMCVsa7jM+BDkPS9iBGb+ES100aJMToSsDNBLeHJ3Qa0GsY5HZJU2SS y2CK91rTe+FPu33SCmFseH3W9eDiJZfhW/QDeG8dbtBzSFogxOg1wM2rLsP/ aDmg6QBDU112vevS780un+q1e91tYOptjwcr053H3zOcZ73fcBuOxce97rd5 jpRd7fXg88DLO24PBzOdx39oiHxQFVtoNsyqNumJzHbfaHx8WW3SFqHsHtdF JwIuPnZZ0hMh/5D9j6YITKEn8rnnSn9JR2SOy5L+CO3vdt/v2t9feR5JQ2Se fYs2BzofcIBuyLf263zn8fP3zictEvoa6b5Zi3FuhwZJP4/H537Ktq+9jmiL oDsy0WOiEQJrv3geSU8k6YssdNlzrkv7Z9wHc+JZxBP8PGLSH6E9jKADgr4I fKAbkjRFiNEUgZ1/XcZnQNcDzQ8Y+s9lU1wXbRJYWeQy+ECLgTycoSeCTgZs oSGCLgh80F/SFyGuWEuDurTfL8JKmXQ5YJR29MW6oifCnK6MsHcm/Yw9eBYm k/7Hg7W4lkTYO8KeaGtk0vxI+iO0b59JuwTdkgei3l4ROkS4Imx7uex094vO SAePg0bHPswrky4Iz2qgLbJcQe1IozGyUq526IjAMtoljH1aJu0SdEuYO5oj aH+8FvExmd513j/CKpm0Q77LNB75M70uq0XomElzBL2R9WOs721frHcS8ZoR 93FfaJG8VFOMRsiBkT6gJq2RAzLF6I2cE/FB1IlwcCYtD3Q87q3JhvbGUjHW kzWVXeV58BnGhG3dTFoarXJpa6D9cHjEG2Z6x79bQVoW3Vm3qPMsfwc6Uxo9 DrQ4lon0eGt2HJJJXwNtjXXC1on9cfrNpBOBRsRyUX9iTboYUyMcnUk/4EjH aAisGeVHRbqFy1lj3iXvZBvvkVPePJPGwEs+PjhmjvWYn4f9N68La9Il0987 5Z2A/2p675h3i4/L9Kw/z/kPrmm/u42PxTY+Hi/I1C9teE+V95mXirhbpr9j ynPls9yG47hHpusuzw1vVdP1l/x7rGWmZ9K7Oua59Ivchr8zSF3+LibX641i rbatyT7PxwD898r0O+vivx+S6e+F8JvqFxGf7DJ+O+C3On6bOCXT3yfgN7qe mZ4P4NkA6lKH3/L6ZarH73n7xZhfZ03HEjHHKbo+HFccU81z1eU3mVd8XuE8 xTG9eyZdoO5eD56v5vjj2Oa45ljl2OO42yzXMbK8j8t9Mx2bK5tVjhf8fLiZ 3D/mNj9rOuY41jiu17CNY3BVHyccI2v7GFmf9+PNKHxuYC5hEt4PzaRvwbF4 YKbjsWOM9Y3H4Dg4wscCDB5l9raxL/Ej3HUynzDL+YF33q/iWKuJoU3MOpxz fuKcwvnkyihfy8cM7Vq57WY+BuAfW2ezB3ddzDO8dDOH18C2mdvWvLH+vCN1 nDnfwjxzjLBfz74Ye2aD+JvANbF4IuWZnh+BnZPMGOz0Mnu7mDf4Yb3PznRu Qk+Jc9kaZvNE97N7TfzB3g2R3qMm5vD5GfY7Pj8rkx8WZDqHrmZOTzXPu5lV eOb4PjfT+Y3z9OlmlvPTeZnOa/A4wEwuvsZmOrbRH+DYZj22r+k45Fi729eW /v58F3t8/NLXvuG3b46Z3dwvdeNf4R5fx9C3WiFXzDF7eSbdKzSvmMslbndH Js2ffQoaF3vR16bemY4J+qQtP7GPqunagc7UyzVdJwaZ8WvM+Su2of8E1zea beqjRbWW+0GvatVIT6mpDRpSrzre2na0pdCtoj1aT7tGPLUm7Sf0puj7Bvc/ JFN97MxloOczNJOeEVpGxZrypIdn0kHauyCdHPSR0LkpRZ1bIr1npN9weq+C 9HDoh7r0yxpsUFD5za6/UtR/Hj4iPc1jYadfdJPQ4Hkr7Ld6XPLMAT2e6TXN CV9UnKZO2fWZA/Ewp1kH1ut6t8ePaPk8lUl3qGek3+Vdv0jvx22S0/tGemQm LSns9bCPjvT+BWnvoOmElg99oQ2FJhDtRrgtedqi/ZNH23si3bGgPka5nw9s Jz2rpvGoU3OacT/0uAcUVPdu17kvk0YT9s+jzoORPjjSH9dUdmCkG05T5/5M GlPYP60pf1BBukPY0SLi89AntiVch/r0/YDrP5xJn4qx0Cki3S/ipWoqw75Y 1yhTebWm4wd/Lel50g/rwmdhLee47SGRfjSTZtTxBWkHoROFLtHjmdInRHqZ mvKkx2fSjDox0vNs7xHpuTX1RZ0nM2lPYacv0mgOfVNTGQyQhwc0h76riQ/6 /J/T1FnW9elnaffPPGnDHND++b6mOfUqSKcI3Sp0iZYP+9O2L3D6pEg/m0nP ivRybsu4aCWxDqwB/aKFhdbRO15PGKOPCe5zhZr6op+JmcY9OdIr1pQnzTE3 ycfdL7aT/sltqcMYzIe587eVuc5wj8RnoC1aSuzVsj/CPs1LmXS3Tgv779HP i06jv4QdvaV/OQYjfUakV3O6d6RXdv1TC+oXzS7arVJTv/TzN+c910erC82u OwrqY4rtlKPxdXqk/3Rb0otquo+c5nlQhz442WNDx2KVXO+V8y5yKZfeBRoG xVz1yL+VSQsDHYxKLt2DYa6DHY0UxkIzBZ2ccq6+qDcjk1YCOgnvZnqPnXfY q7nS2EfXdA/JuyW0ne6xfo14YYT1Cqpf8VxX9ZrwGbNc7XhfgX54R+Uh3qXI 9fw5zxrXI507/0mmZ9N5Lp3r3leZrn3Uwc67D7Vc70LwnssSufpKzx8T8ywq 9s/cD89v8JwNz2t8GfHcTNdZrrdfOs19ymfug7nwngXPuTP+PM+Bezju5bgP RYPx5wgbh/2HTNdTroNXO83z+8SUce/B/S/3w9zbMv/MY3C/yb0o96Gw9oJ5 457u20z3sFwDf3T/GxU0NuPyfQ7Nx3ULivEF31M2dZ70mq6/hue5wPP51dc4 xqLdb67fpigtFXRU/gjbXxG2DPshYfvT43J9/jvTNf3omq5zXOOOrOk6x3WN un+4/u9O0w8B/Ue0H//NdD/NvfThNV2zuc5yL8BNzlau+6/r7Ow86WNqOndz 3v7Pdei7c03XSM4/Z9d0zuJ8dXxN10iuZd1quuZxnepR03WIa9ApNV0nuEac WNM1hutLl5queVzvTqrpOsE14vSazvUnRPrcms6hnOvOr+l8x7nugprOcZy7 zqjpHM35Oa0L/jyrpvM45/BDa/o8fJaLaroX4RzYr6bzEf7i3n+Nmu7rOc+s XtO5i/t+7v/5bnFiUdor6K5w7792Td8nLq/pHMd5ift3vlPwnYPvA+goLel4 /ZpY6Gke6G/DiDdyGtuGTu/gNtS/tKbjn2N/qOdwM++RR9zM9TmvtKrp3MK5 ZNOazifUQ5tjqHUZSL/sPpq5n0tqOv9y7sXW3PYtvJ6s29U1jcdYLVkP1yHe 3H3y3YbvOHzv4RrCdxa+X/NdZ8uavnMOrKl9mlcLt+VdLJ5n+8hxa6e383mS 8xv3eEf5uOAesJNZ5dp4rPmk/GjX4bw42udYNFPZf2HvBT3JBWaJ+xH0Orkn ob9j3Oco2/d3Gn1M7pWwfWD7ETUdnxyb3Ose4fRhNR17HHfc03X1ccG94nFm nnuik31cEJ/idK+ajoeD3JZ7RO4pD65pv4nvcdw7H+b+18xl53rBGnT2OmA7 yHbONxwD+PFs90U/3Muc5mMNLdNZnue9/rwcv9w7o4V6rtece3Huy9FEne61 4v4XDdZ0/zvTnxG/cO9CHyPcD3NDB/VTf0b6etP+4v7xE9up+47rj7Gde0zq vuX68ECa+/40J+730VblnvhAt/3Iae6LsfP58BffYW72Z/2w1nS/jX/h4l63 vdCcvOf1ud1j8dm5T6ftKH/ud/3Z73L98+137KwB97yn1nTfy712L3/enjWd H5nnnjV9z+X7Jnuq5JeIuveZ4RYFfc/mezp7AFxj29d0XeZvE/N9nu/y10fc rqa/U7xPTd9/+a7K/XLvms6Z+P90M8C1m3F53ZF4L6e5/z2zpnMp+5IcS2j6 vuj5kEdremhN36NXzJUnvXKuPVy0oSfXtL+JdnBL29CFZm+WPR3uBdhjpu0S bouuNHu87Imifcz47GdjZ28K23CvCbZhrs/cbrOdvQf2zrhfYA3Y0+ZxGfa3 WZclM+/h1nTd55haMld+8d5vTfcUvOu3k9dzZ6f52+5DasqT5vjuYgZg4wRz BXs97V9sPWzn3NDNXHWv6Zq6vzns7jT+4nsO34W4X2tb0z0b727t6PnwntGu 9vuOTrdxvJvtl/rz89nb2U5dPscuTi/+G+r+LJx72X9h72VJj0U552XqfOi4 jetznt7O9Tnnkufda74nofPLPcNYp28yV3wf47vZJt7HZu+aPRL2T9hjZ1+E /RFsaf+dfRKuGegNcU1b23vXfC9j/5o0+4GUo0PE3hrHOVrPnDN/dlvsi3Vr a9aprSlN25tcnz0N4mluSz9oPbNvkfZluKfi/o19mcGe48ueZ7+CNJz7F7RH /6yP/Rc8Nz4Hezy0bebP/orTnOcZl7kMtp29I+7l2ONgf+N6z4F9IeKpns8Y H2/bF6TXPdnHHcfEiz5mt2zEeuf6LrNNpKfkusbfWo8+Gvqe0zziyQ3dh2wc 8aYN3cfcEnVaNPT9Z9+I92voet814tm5+Dop0ic3dJ46NuJZuY6TrhH3bGi/ 8uNIP1XX/mWXSHdvaC+SdXrGa7VZ2A7J9T3rKPa3G9rb5X1v3tXkPc63wz66 rn3f+6P8gYbOWawxa80+673+7JwTto/y13Ldi7zFGjT0O8Qbkb67rvrtmXtD 9zRv8ttKXXXeifSYuvZxj+QzNbSHOyPSuzS0B8z5C+199tLR5Ed/n/35R5zO fL1D+zvtqZDmHoD4c6dZgy+8DsRznOY6QvohX8fZ+2DvgHMEWtsn+B6Dfhjn EdvT/gra3EmXe67r0xdjwOwTrtPD1ymu11xL2Rdhr4TjmOMazW72Kjimv/Mx jr43x3VPH+9fOz3M13r29tjD4D6MvQf2P9hDGecx53ncZ1znJM+Hfm50W8bl ewHx905zXHJN5x4MX3O95HcGtOufqum3MK5pXFO5nnKM3F/TtWVP27nu8f44 f5+A3yl4j/xRpx+3nf1wjiXacz3iesK1hOvIcq7P75n3uw7HID7H9/xWs4/r 720O4IM957rTcMI4jMdvJsv6t7w9CtK9R0O/fUG/H5JGS5999iedxjbWdZb2 74zbFfT5x9v+lOtsZ7+87nVDPx+tfH5jpO4413/adubQ1fWog40yfof5LMaa UNfvD4d5jdBEZ4+cvXKuP+zBsD+zjH/vYw+F45rzCGnK0W9nT4fvOy87T3qy 0+zr8L2evSe+27OPxX7WM+6/4HMa+2HoxbOPRcz+F9/7JtlO+g3X38m/v/zn +fB74/K5votcE3Gbun4L+aemvS2+G6bfEmoF/R0KfjNb/HtZrnsg7OjYMze+ q7J/w94Wn4l9LPTo+c7I9036TLa/bZ/i8e7wOlDGXhZ7XawP68G7VJv6fSr2 9viMfG7WBU18vtu29md5sKRrHL/1Hm/fwRY+5XzL78eH2u/Y8TG/12Dn2sWe EHtA3GeyL8X+FN83qb+M++H+pO59p4/chvrsi7E/xj4bPMIlnHLvuoT3mtgz 4b6L7yzM/VfPnz0V0pP8udD9T3uNpPneSvy705P82dlfxLdF8/CG58D3Yu7t GIs9Ha5zRe/7MTd+m+e4+NTzZz9trOeMnd9F8TV7PnzPZc+Uex60g0izd8q9 6Mq+x8VH/F1t3sdc/B3O95bcF1OH+9Wbnec5B34nW8l27oVhiWvJHPubPTfm vqbXiv3MVXPtMbJXuIrTaBmSZp+T+xr+NsMQs7q+589+2uJ0QeVrmw2uF2s5 DTPYnzNH65glfpcnzbECg6v7M26e6/5+Xc+b44G9vq3jv61y6Ssx5noel3tE bGjzbG47xxG/s7OmlPOZYZx3rdBp5PPe6XGbm3/WsKXbwjP3lFw/t8j1LMXG 7ntzz21dz5PvIIyztefG3+DYxMcC7clz/9bcxxqfcQvXo85qngO/uS++z8v1 dzn4DbK56+MXjhn2kLfyWHByUcST69o/bem5MX80zdA443kD7qM38jps7TWh LfFGZu+zuGh8les3Vea1hT/vxv7snI838PqjidXKdZj/lrbTJ7/LtrId25au /7bnn/aX2LNOx3TZxxTPVPA7N/tA7GmxZ8R+Eee9y3xO43sne3Y9Cvpdl9+2 OYb47fe6mn7/hSnYgrEBNe1/cf6nj8vdD/XgjvcfaTf4/7Vd3kzyvMoVNT0T wHMv/JbPfh6/LfPbP3t1X8e6tarrt/D3o13nhr4LLYj0oFzX3+si/qyu/eJp kd6hoT0vzsMDPLfnovzCXPcVX0c8INe1nr009rzY73op6vTLdZ/wYPTxUIQ+ Pl//6GsEv++wN8U9Tv+a9uZO8/Wuv9Pn1LQ3yj0Px8EqPha4zx9R0/3GQh// aGpSh2OGcwL3r6QXa3BmagMb2Ea6Dr9185s3+wHco3DtZt+AeyPs7Etw3uC3 avbPBzrNPj2ssufGft3rMW6bhvYlOYet4PMB68veBN83uUdnr7anP/t5Nd3v cZ/J2pzo+8Nz/HmxnW07v/PzvMIpbne+23K9uNjXDq6JF9Z0rec+oa/XmfgC p6nbz/Wpe5HrT/aasp5TY+7bNrSvmkf8VK7vmm/x3SjXMw7vhX+vzrU/MSfS n9f1e8aMiK/M9RvHi5F+vq7fSM7hO0pD96T9Ir6goXvJzlF+XF38bBPxkFzP brwW6Uty/d4xNdJT6vot5c2IL821d/JO9NHO9U8N+yl1fYeeEfafcj1Dw3WZ 32OW9u8yXK/ZT+C3E35D4Xcl9pO5vnPeet92fhu6JfoZ1tC+xWz3Q1t+O+I3 GGwfRdytoT0p2tXcdnrYvs/1XMkzZp7fHHty/NV1rN0TdUY1tEc2MuK7G9of vTPiuxraL5sT8a+5nq2YG+liXc9TfBC24xraH7km4kEN7ZNeG/HghvZnr4/4 hob2em+K+vPr2h99NdKtGzpeh0f6R27GOR44TzZ0Pvs30rfnuo8eGvH3df1m U4ryx3LdI21c13dIvj9eF/YhDe1J98d3dT3fVMbPue6thoTt+rqeP1o+4kfd zx1RZ0RDe0bDI769oX2jn6POXbmejRodtnsb2sOrRvxErmeyRnCdyfW95r6w j2novHtjxDc1tE98a8S3NbTHNDTimxvau/o02h3f0PNBD0f8SEPH3g0x7v65 ficZEek76vqdc3jEt9X1e+mFUXe7uvaXRjLPun7/hOuLzHZvOPd5cmCkf8v1 O9iOMNzQc0U/hm1WXfdZl4fti7p+cxuY6xjj+Oof9lc91vZhn17XM3Cnh/2M hr7PnRLxM3U9m3Qz9++5ng/tQHlDv0ncH/Y+uZ4BfDDSZ+d6ZnCFSC+s6/k2 5sv5nTmvE+3Wbei3n5vC1jvX85Krhm21hn5D4pju4+P6rIi3rWsf9bxI923o +9/5EV/sa8G5kX7BdTh/zPc5hOvJ2Q2Nu2WUn9rQs1Yvh/2Dhp6T6h7pj2zf Iur0aOiZsLm57gm4H2Acrj2MtR3X7bqeWVyY61jiOHo5bK1znec7RfqVur63 XR62rnU9Gzgt6m5W137nZbnOO5xzuKZd3FD/r8N/Xb/LXhH27nU9T8eXW45V jtOZcFHX77675To3cV76lj4bmhvnPM5lnMcOivT7DT1j93ukZzb0fNlVuc6/ nHs/jv4+qet3351znWs4z2xe1zWe6/tHkf6wrv3mLzgnNfS8WEvs3nfimt/T 56JFsNDQs4mcX7/xOfaoKJ9U13XyhLD1zXWPt2vEJ+e6Jnapi0uYZG+J/SOu vewt3eP9pQPC3rGh72fsXd3r/SvWAD+xDu8w31zPaLYN+yZ1PV84rS4f49/7 6toXY08sa4hduB1V1/4Ue1O9It021/OA7FFNz7VPtUlD+3rs6T3OOaSha+OT EY9t6Hr4bMTPNXT/hR/Wr8sXK0d6lYZ+K30q4nENXUvHRzyhofuVpzkGG7pP ahfxzFy/D7aKdMuGfu8cVtd+InsAcH1wLrZb18X64jR+MZ8TWadc9yHEPZxm j/DMXN/fOSYWHzOZ/Hx8Ll+XwrZvXd9VOc99kutc90tdjMIn+5HjvCd5WkOs 0PbESH+e6zeX3lF+el3P1j3K+b+he5Cnw3Z+rmd+d+d6UtczoE9E/Hhdz2Ic wXWpoX3zR8P2SF3XT1jbOxdvf0W8V13fNztEvGddz1N2CPtpufYw2bs9K9d3 2wGcL3M9O8vxsUeuY6R9xKfm2k/ePeJTcu1L7x3196nrWcy9wnZ6rvucq6Pt N3U9h/Jz2K5s6HfEtmHbta7fDx+O+KG6fl/lPrez71Xg9K26WD020uf6us99 0FzfC3Fd+sPXpu/CdmOu5xr4rP/k+rwHxpivNfQ7A/cv83wPw7yuzzW33SN9 VUPffw+M9IsN/d4+vq79ZfaWv6rrM/N5T2joXMB5gGOdvWaO9wVhuzXX8wFr cv5u6HsDTM0xVxty/W/od/21OPc39EzAihG/mOu3+ZUiPTnXcwCdIz7P90XH RHxOrvvhO3PdB3APwHWe+wau9ctH/HyuZxEez3VPwP0Aa3xoQ+t8eKSnNvSd CEZ+qouT3zif5HrO4/hI98r1Psevkb4713Odv0d6VK7nSHar65rK9fSPSI/O 9azJX5G+L9dzHt1Yp1zvcIzMdc/B/cYhDX0ePsthzK3uZ+QjPinXewwco1/6 OOV+s11d53Z4P8rMH8zc6/rO92/ED+R6jqRXQ9cwrl//RfxgrudIFsFbrmdH 2Bx9ONfzIkXuT3I9X/I+PNb1fM+fnEtzPcvyd6TH5HrW5J9I35/rOZUNOI81 9L1wD66Hdb23cWzEx9T1XDD3euW67veWibrP5noeZVnOh7meR1ma81uuZ2Lw z/720RIRj8/1LEuDc2Ou5wenNORL6nTkmOV8ken7xEp1fadYkvNn7mcPc93b cV/HMXG4jwvOwQf5PMzvM5s39BsN15ODfE3hPFfxuY7jo5mPEc5JuzZ0XuLc 06mh8w/3KdyLcB+yU133ZNyP7cN5qaHv90tF/HSuZ2smRnpSQ9+xOSfd7PPS K2F7taHv5P+LeGKu53U4P1UaOkctR9tcz+Ic3dD5gnPFCtwL5XoehXtJ7vO4 x9uaa2Zd7/1wjb3W19mOsNPQOwBcG3dq6PrI+ewOn9PG5vrOxtpyLL5rhv8P iKnP1Q== "]], PolygonBox[CompressedData[" 1:eJwtmHf8j1Ubx+9fdJ/7HEQUTUWFlhYioWSVFaFkjxQyQ1lpCSWUkkqUliSV tmRUD57G09Sira30NCRFvT99/HG9vp/PdZ37Pt/7nGudU63vsI5D98iybGRJ lpXmd3CRZU2QdnmWTUMGgRshZ4GnIr1jlvVBWoL3Qh7Gdjl8MbhMyLIl8Inw RfAEXw2/Af4CvAp8KXwSfAm8LLwy+PuUZRXRH41uFb/T0a0GV8Z+D3wUfA68 BP4I/Ar4Ung5+G/wi+HT4R2RU+F14MNk53uu4d0/oWsLvwT5Efw5umU8WxH7 QMYOQs7Gtj9yCrgxY9qARyCRsU/u/m/nIQPBpyBngqcg3cHn8MxE8ADka/hn PPMI74dmLeAtsV8GOQepju1w5FDsx8HbaG2xjwXX0hj42fAJ4BOR/oz9SHsA vggZrm9DZoFvRFqDd2E/LPc7WsH/hB+ae84V4GnoloMrMeev4IXojoCfizwN vgbdo9pP7E2Z7210J8P7Is+Dr8O+ArwP9mfh18KfgFeAL4dPgT8F3xv+DHwy fBm8PHwNfAb8Jfh+8AN5/8ES8LHo5mC7FXkZXFt7BB6JzAbfjJQCf8f48ryn OrwDv+3RjQf3yP2t32Ivt/ubT+a3J/ZrwUyR3Q7/Eb4Tvgt5Dj4V/gy4IgNu hX/M84v0fxj/Anwm9rXyB3QvwmfB18MPgLeG/xbtiy0ZvxJ+PXwl9n3RvQvv Ar8c3gC+GT6W97cGl2L8fPgn8MXwBvAN8h94ffjDBOJQ+FCenyF/wP6s9g75 HN5Ea4L9O/h28B/Ias2F7kvwZuTFaB+U70m3RrEXbVOc34Htb6QT/G9kA7a3 kErgbxXj2N6Gt8qtu5r/9k60rR3/8QPwAKQK/DvkJOwnIqeSP/4HPxZbX/gZ jL1Jor1EumI7ErkKfDXSBXw4ci/4PqS33oVcqe9DmiuW9D7edQyyF+9/FT4K 223RWHMeA+6JvTFz3Yj0xv44uo+xN2LBf1A+QUbmjulPsM2Eb1UuQIaA66Kr Cq7K+lwFfwXeTPkDWQ/+L/JV7vz4mnw12vaNvoe5X43GbZm/JNqH5bud5c+8 r150LOsblEvfj1475dR10d+sb9UcX2uu6P8iH2gYnbOUq/QNk5UP0G0Bt2e+ htgawIfL/3Ln7sbwUblz+MfgD5H9cj+j3KUcp9ymHHaG8j18dO41eEC5Ozr2 6yrngfvLJ8GTFD/KBcgX4J2s73vYevCfGgXvQQ9s3ZHJuWOwL7hfdK6soBzG 2E8L+/Ig5DTwadjH5M7B3cDnI1fJ93LPtYVnDio855PKPcin4M+QteD/RMeW 5uwPviC6VlVE5vJcC/il4EOQC+Bd4Vfo27XmhefUXNrzL+DDma+V9pJ3LsP2 GPJRbp9apViPtuk/fsj4PoxvGuzzJ2GbVngvVINuAn+D7lfwb8iYwjVDteI9 pDvPdtOeEpwblbOxLWX8B7l1Y+GPRtvK8ZGdGdspOVdozDjs/VQDc+eIodiG JO+N9uz46DXTWg1EXtfeML587hh/D349vHLuGjmjcIwoNvbPXFsHa0zuGvuL 8j3v78C3nhOcCy6M7hWUE+Rrm1TTc/ucnp3FMz/lfof+q3xKvqT/rFhsFF2b FZNPKzdH+4Zq3s3gWxSD4GO0B1q75G9prPwBH419rvJbcO5egX1ycA5X7/EM /MrgHuRp8CHaf/gk5Hl4ddWL4GfUezyVbFMP8hy4Grpr4FcH17LlyVg1TbX+ m8K9kGq+eouthXsJ9Ri9knOicmET1U/Vfvl38H96TL4NHwceG1xrl6EbH1xz H1etRDchWPcI/ED4ZeBLkc7yf3Q3BNecE9RfoLsOXgNZD1+HLMFfZsI7YTta exLcs6jXWIN9WnDPcRh4NTI1uEdRbXsCPjG4xql2LeD7quWuYU/Cq6oGBY85 CL4SmRJc41eBA3J+bl098BHyJ/BRwbVXMarYVA1WLd8Br5+5pk+DX5ccO9XR beHZP9B3ZuyO3L74M7xjsE+eHu2j8k3llIexH6D8Ah+NTIU3i36Xnrlc35ac 29toDHhUcq08U2vOu4Yl54pdxNRI8AikTO4cMQl8RfKzZXPnYtUE1QLl5I3R NVS1UzGhXKscrtytnPs1uGZ07VuD7iv4nvAa8OXBvc8e8BaZeyDlrlfRzQ7O YR+Cz0O/loS0EN0byT2wet/b4K8l90TqheYE9z5Lk31HPdBm5YrdvdVTwb3i o8m+qJ5xA7hl4d5onvob+JmFe5cFWh/4uORvV49zFvglZLpyYfB/HYy0CP7P tcBHIoeBy/GfjwMfL59QLYPXBq8t7LvSdYW/klzby7L+dyoXqB+Hv8mc5+r7 kYbwTWxafY3Hfpz6OeRo+FHJ79acd2n9sB8Pfkf1EFsNxVCJnzk/eU7NpXee DO7C+EElnrMOfH1h360V3Lup51Ovpx5OteID1bTgmtEvuSdRL9IcXXv42Ui9 4JjsDe5VOLfrmY7KrcnfojGqLRuxNwuuMap9mwq/SzWwFfaH0DUAn6iYTz5j 6GxRDd5N549kW//cuaINUic4Z7TVfiKn5NZ9ybs2IzXZ35/RvaO5sfcD18+9 t82RE4L3eD/tt/orxh8Y3CtXScb/9szJOVy5+yB9v3JjMlZP+Bi8VPLZp6by kfp45Wj9d9Xs5DODzgpV0X2mvZBPqXdQflSvm3yWOSp37qqaPFY5rFryGUNn C73zB3Dzwr31n7nPUnMKY52pdPaYB1fA6AzSUO+Gzy2xzyhXHpG8tsqZF6sW Jf8X+fib2nt4H3i93GfbfdWTZD7j3o38Et0b6gz2E7gVupMyz6mzyr89eu4z SwvlnuS115qr97+lcO7TGUB7dT32TsF7pl5jNvZtuXsO4d8Lnz2lG6PYT85t ymE3gHOeORfeJbg2Vko+q6tGqvbtm3wWUg1U7don+SynGqbatHfy2Uc1SrWs QvJZUTVNtaFi8lleNWJ0YZ+UL76LzI+OacXyW8jLhWNYsVsbuTs6ZhWrG9Sz gZsiB/OtHXLXwvLJZ1vVROX6vZLPdsr5beHtCp/dx+WOdeVc5VrFvPZ2QfTc 2mPVpgbJc6tGKbcujJ5bOXZk4TOozp46s6r3fb9wbVcPrF6icvJZUT2F9j4l n63lA+sK5xDljiORKtjLJJ+VhyP7w8sln6VHKb7gZZPP2iODc9E8dK/nzkl3 gG+PPntJ94Z6mcK9ts5Qqr1PFI4N1eD/az0Ln710BtTdgXK6crnuEBbpvKox 4Dy4FrWLu9cOeQD7ZfD54D2xPwSfAL8fHuH3wcfoP8FLwe+HX6qYgpeGL4aP h98LL+APwsfBF+q/wkvzX5YVPivqjFgrusapttVRzwd+o/DZRGdG9TJrk3sb 9TRvwqcU7v11R7WlcE1ULVSPeyH4k8K9o3JII/jrhd+tmD0d/lbh2FXOU25s nVzLlCO3F66JqoXqgb4tXGNVW9VTP8j8i6N9W3coyt21o+9ulMOVq5dE9/7K 2brbmp4ce7rj0t1GR57plfuOQ71c3WRfUU93p3xJPTd4ADITHuBd5avBd2/z 0V0UfAenvboZ3jN4z3RXdxd8UPCd3WxwRNcD3h25EV7Au6kWBvvCHNWwYJ+4 BZzQ9Qp+p/Z6VvJY7bn2+qbkd2nPH0z2YfnuiOC7oUXJWHdEuktaDL8k+E5J d3v3wocG3/EtUGygGxj8Ter1ZyR/q3r++xTr6DplfuYexQ58iHJz8F3jwmSs O8e7FUvoBgevge6uliT3hrrDuhVcBl2f4G9+KDkmFYv6j7orux/dsOA7sweS Y1ixK11HcIfo3kZ7eAf2csr/qr/Bvn97MlYM/FW4B1PvpZ63LPa/omOjX/Cz O6NjS+9oDv618F2nzrTyhV3Rd63yiW3Yvo++G1JNUK+8NfruSz3ziMI1VrVV ZyqtXaXo2qs11NqVJN+tag1Vm0ZE3zWqRmkv/o6+69WeaC2z5LtcranW7s/o WNYafg7+IrqXUM6+Lfkb9W19g2N/bjJWDvgUfnrhs6fOjPLNP6JzjXxUvv57 dG6Rz6t2bYs++6mG6e6jaeHaoDsQ5aZ5ybGiHCXf3RGd2+TDpaN7bvXaLTL7 /vboXKUY0N3DgMK9v+4g/gH3csyu "]]}]}, {}, {}, {}, {}}, {{ Directive[ RGBColor[0.39598880819409377`, 0.24, 0.6], AbsoluteThickness[1]], LineBox[CompressedData[" 1:eJwl12fUVcUZhuFDLzawEDVNIkSTGGOLgKIkiBRBjRQlYkXERhApKoiUCBaa qCBNSowiIVQFQ4gCCoiCXVB67yDSe/F6Vn7c637fZ/Y5396zZ+asr2LzRxu2 LlIoFC4sVijUL10o1FG3w0gswAFUdkEjdMdErMBJRQuFangAAzEX+1DZ9zRB T0zFBvykeKFQD09hPFahfIlC4Tp0wFtYgqVYhuVYgZVYhdVYg7VYh/XYgI3Y hM3Ygq3Yhu34HjvwA3ZiF3ZjD/ZiH/bjAA7iEA7jCI7iGI7jBAolC4UiKIpi KI4SKIlSKI0yKIvFrh+N9qiJcnkOzzsOnVAXFbDevExBDzRGJew1f3MwAC1R FWWx3HxPQDc0RCXsd1vzMQJHSxUKbXmO93d2WfON/mUKhdn6Cupfqd/n9/Ci +kP5WeqK6v/xdPRTfyA/U32e+r88DX3Vs+RnqH+p/g+/iz7qmfLT1b9QT+Up 6K2eIS+v/rn6HX4bvXIP8nLqn6kn8yS8oH5Pfpr6p+qJPAHP597kp6rPVY/n cXhOPV1+ivoc9b95LJ7NPctPVp+t/hePQU/1NPlJmRf1WzwaPfIs8rLqs9Tb uAK/Kyutnspl+Ca+UX4TSmCjrDg3QFFs1Rfj4a47hvX6o1xPdpi36I9wXX0d 1FYvlB3gV7BZ9nKu416ZD9RSP8+75c/xHv6z7E9B/TA/hAfRV/8D1rpuB18t 68Pf4yvZtXyV7Cp+CPepm+NZ9ZdclT933VbujnmyT/Axusur8tPcBZ3RDV1j 184x1pU76Z9CR6zXP4grMdf4R7gDd+IuVJF/5rot3CN/W9aTv8g74G/y7Pw1 L8JCPOP6ZbwcS7ESK/I5eQ2+Lp9Tv8R/1P+Na2GjelN6tA6y6zM36lf5UW6D x1BXv5Nf47bcDkWwwfcWeA/+YWw3v857+UyUNP6OvkTWP5fimZiRdZ49kHWd vZN9glk4H5WyL/FrVMYH+Ivva+Q7lqjnZg5zH9wYF8l+j8GyIWgva4LLZJdj qGxY7h+3yqvIPuHh+hEYiduyPuSf8qg8T54FTfVL5ReqP1dXV3/B1/Bvsub4 K30N/jprkX8rr8UL9ddxbVyPObgB9VEPN6JBngdNcm/41mca6RfxE7gzz5hx jDc+AU/K7kIz2R2YKJuEjrK7cY9sCU+WvZ1zBvdkfcuX85ScSbgEm2V/4Ja8 0tj9vIof4EvlD/Oa7A9uhUcyR/irsfvlK9Rrs16yzrkltuc8zRmV9aVujcuy RrmF8abq+7I3MD1nE1ZnbxhvztNy/uS8yVrWt5Dfy8v4Ytky9b3qpdw87152 Ny/OfPF3mR++SL4g94rbcSua4jbMxy1omHMs6ws3Z11k3Ofm8cf4CL/TN876 y3713Y9jXM7X7A3jddBM1gFjc77iG3XN/F0ek7MVo/Gl/trcE7+pfwP/xGf6 C7Ins+5zJvECWdXcK1fLXpBfmfvSX8HzsqezX+SX5l71F/MleaeYnbWY+8cF Wa9Zx/gwz+4zDXE+FmcefPZm9S3Z4xiUcwAVjZ2X+ZE9hoGyAThXdk7mLGd1 zmm8lPWmL561zc/o/56zEqP0u/gG/s74CR6GHbKhOaf5UNYOD+St+Tu8jfdz 75yfOXOwBuuwNme1vGbOOezK2Zg+c6yvwY9kLWd9Y0meFdfkdyJrXd0Cz+X3 gKtlXWWvZD3lbM1vENb4zk08W9aFZ/GH+CB70ViVnDncAe3wBB7H065931jn zJ2+LdpgXe4p7w4zjM/E7WiGjbLVrtnACzJ/PD/rA5+mN1aNr87vgvoFvlx/ Barnd0u2nXvhW1nvzDfvzG+Ksep5fryoX8X9uFXOrfxdff/MGbfCPvU6n9mb 3wZ9bQxWr5QNyp5HHSzSH+QhGJnv1Y/gNqiX+9Af5/p5/2igLiabzEV5Ep8h Px1v6t9AN/VEeRF1+ewRfh1dcwbKC+pyOad5FLqox8tP8Gk503MPeQfqcfLj fCqGy15D5+xf+TE+BcNkQ3OGqcfKj/LJGCIbjE7Z1/IjfBIGyV5FR/UY+WEu m7UrG4Ans+flh7gMXpG9nLWRc0B+kEtnz8j6Z73k2eUHuFTej6xf1lTOCPl+ Lom+sj5onzmR7yvz//9NfgTa8scH "]]}}}], {GridLines -> Dynamic[ Map[{{#, GrayLevel[0.7]}}& , MousePosition[{"Graphics", Graphics}, None]]], Method -> {"GridLinesInFront" -> True}, DisplayFunction -> Identity, AspectRatio -> 1, Axes -> {False, False}, AxesLabel -> {None, None}, AxesOrigin -> {Automatic, Automatic}, AxesStyle -> Directive[ AbsoluteThickness[0.2]], BaseStyle -> Automatic, DisplayFunction :> Identity, Frame -> {{True, True}, {True, True}}, FrameLabel -> {{ FormBox[ TagBox["\[Sigma]", HoldForm], TraditionalForm], None}, { FormBox[ TagBox["\[Alpha]", HoldForm], TraditionalForm], None}}, FrameStyle -> Directive[ AbsoluteThickness[0.2]], FrameTicks -> {{Automatic, Automatic}, {Automatic, Automatic}}, GridLinesStyle -> Automatic, ImageSize -> 200, Method -> { "ScalingFunctions" -> None, "TransparentPolygonMesh" -> True, "AxesInFront" -> True}, PlotRange -> {{-5.998281049726145, 5.998281049726145}, {-2.4671246958039834`, 4.001949607734325}}, PlotRangeClipping -> True, PlotRangePadding -> {{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.02], Scaled[0.02]}}, RotateLabel -> False, Ticks -> {Automatic, Automatic}}], TraditionalForm]], "Output", { Background -> None, GraphicsBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics"}, DefaultAxesStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsAxes"], DefaultFrameStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsFrame"], DefaultFrameTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsFrameTicks"], DefaultTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsTicks"]}, Graphics3DBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics3D"}}}, CellSize -> {550, Automatic}, RenderingOptions -> { "3DRenderingMethod" -> "BSPTreeOrDepthBuffer"}]}], XMLElement[ "dataformats", {}, {"minput,computabledata,formatteddata"}]}]}], Typeset`pod3$$ = XMLElement[ "pod", {"title" -> "Alternate forms", "scanner" -> "Simplification", "id" -> "AlternateForm", "position" -> "300", "error" -> "false", "numsubpods" -> "2"}, { XMLElement["subpod", {"title" -> ""}, { XMLElement["cell", {"compressed" -> False, "string" -> True}, { Cell[ BoxData[ FormBox[ RowBox[{"\[Sigma]", "\[GreaterEqual]", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", SuperscriptBox["\[Alpha]", "2"]}]], " ", RowBox[{"(", RowBox[{"1", "-", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], ")"}]}]}], TraditionalForm]], "Output", { Background -> None, GraphicsBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics"}, DefaultAxesStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsAxes"], DefaultFrameStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsFrame"], DefaultFrameTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsFrameTicks"], DefaultTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsTicks"]}, Graphics3DBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics3D"}}}, CellSize -> {550, Automatic}, RenderingOptions -> { "3DRenderingMethod" -> "BSPTreeOrDepthBuffer"}]}], XMLElement[ "dataformats", {}, { "plaintext,moutput,computabledata,formatteddata,formuladata"}]}], XMLElement["subpod", {"title" -> ""}, { XMLElement[ "minput", {}, { "FullSimplify[-\[Sigma] <= E^(1 - \[Alpha]^2) (-1 + 2 \[Alpha]^2)]"}], XMLElement["cell", {"compressed" -> False, "string" -> True}, { Cell[ BoxData[ FormBox[ RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", SuperscriptBox["\[Alpha]", "2"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}], "-", "1"}], ")"}]}], "+", "\[Sigma]"}], "\[GreaterEqual]", "0"}], TraditionalForm]], "Output", { Background -> None, GraphicsBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics"}, DefaultAxesStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsAxes"], DefaultFrameStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsFrame"], DefaultFrameTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsFrameTicks"], DefaultTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsTicks"]}, Graphics3DBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics3D"}}}, CellSize -> {550, Automatic}, RenderingOptions -> { "3DRenderingMethod" -> "BSPTreeOrDepthBuffer"}]}], XMLElement[ "dataformats", {}, { "plaintext,minput,moutput,computabledata,formatteddata,formuladata"}]}\ ]}], Typeset`pod4$$ = XMLElement[ "pod", {"title" -> "Alternate form assuming \[Alpha] and \[Sigma] are positive", "scanner" -> "Simplification", "id" -> "PositiveAlternateForm", "position" -> "400", "error" -> "false", "numsubpods" -> "1"}, { XMLElement["subpod", {"title" -> ""}, { XMLElement[ "minput", {}, { "FullSimplify[-\[Sigma] <= E^(1 - \[Alpha]^2) (-1 + 2 \[Alpha]^2), \ \[Alpha] > 0 && \[Sigma] > 0]"}], XMLElement["cell", {"compressed" -> False, "string" -> True}, { Cell[ BoxData[ FormBox[ RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", SuperscriptBox["\[Alpha]", "2"]], " ", "\[Sigma]"}], "+", RowBox[{"2", " ", "\[ExponentialE]", " ", SuperscriptBox["\[Alpha]", "2"]}]}], "\[GreaterEqual]", "\[ExponentialE]"}], TraditionalForm]], "Output", { Background -> None, GraphicsBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics"}, DefaultAxesStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsAxes"], DefaultFrameStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsFrame"], DefaultFrameTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsFrameTicks"], DefaultTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsTicks"]}, Graphics3DBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics3D"}}}, CellSize -> {550, Automatic}, RenderingOptions -> { "3DRenderingMethod" -> "BSPTreeOrDepthBuffer"}]}], XMLElement[ "dataformats", {}, { "plaintext,minput,moutput,computabledata,formatteddata,formuladata"}]}\ ]}], Typeset`pod5$$ = XMLElement[ "pod", {"title" -> "Expanded form", "scanner" -> "Simplification", "id" -> "ExpandedForm", "position" -> "500", "error" -> "false", "numsubpods" -> "1"}, { XMLElement["subpod", {"title" -> ""}, { XMLElement[ "minput", {}, { "Expand[-\[Sigma] <= E^(1 - \[Alpha]^2) (-1 + 2 \[Alpha]^2)]"}], XMLElement["cell", {"compressed" -> False, "string" -> True}, { Cell[ BoxData[ FormBox[ RowBox[{ RowBox[{"-", "\[Sigma]"}], "\[LessEqual]", RowBox[{ RowBox[{"2", " ", SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", SuperscriptBox["\[Alpha]", "2"]}]], " ", SuperscriptBox["\[Alpha]", "2"]}], "-", SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", SuperscriptBox["\[Alpha]", "2"]}]]}]}], TraditionalForm]], "Output", { Background -> None, GraphicsBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics"}, DefaultAxesStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsAxes"], DefaultFrameStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsFrame"], DefaultFrameTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsFrameTicks"], DefaultTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsTicks"]}, Graphics3DBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics3D"}}}, CellSize -> {550, Automatic}, RenderingOptions -> { "3DRenderingMethod" -> "BSPTreeOrDepthBuffer"}]}], XMLElement[ "dataformats", {}, { "plaintext,minput,moutput,computabledata,formatteddata,formuladata"}]}\ ]}], Typeset`pod6$$ = XMLElement[ "pod", {"title" -> "Solutions", "scanner" -> "Reduce", "id" -> "LocusSolution", "position" -> "600", "error" -> "false", "numsubpods" -> "5", "primary" -> "true"}, { XMLElement["subpod", {"title" -> ""}, { XMLElement[ "minput", {}, { "Reduce[E^(1 - \[Alpha]^2) (-1 + 2 \[Alpha]^2) + \[Sigma] >= 0, {\ \[Alpha], \[Sigma]}]"}], XMLElement["cell", {"compressed" -> False, "string" -> True}, { Cell[ BoxData[ FormBox[ FormBox[ FormBox[ TagBox[ GridBox[{{ PaneBox[ TemplateBox[{", ", "\", \"", RowBox[{"\[Alpha]", "\[LongEqual]", "0"}], RowBox[{ "\[Sigma]", "\[GreaterEqual]", "\[ExponentialE]"}]}, "RowWithSeparators"], BaselinePosition -> Baseline, ImageSize -> 550]}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, AllowScriptLevelChange -> False, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"], TraditionalForm], TraditionalForm], TraditionalForm]], "Output", { Background -> None, GraphicsBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics"}, DefaultAxesStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsAxes"], DefaultFrameStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsFrame"], DefaultFrameTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsFrameTicks"], DefaultTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsTicks"]}, Graphics3DBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics3D"}}}, CellSize -> {550, Automatic}, RenderingOptions -> { "3DRenderingMethod" -> "BSPTreeOrDepthBuffer"}]}], XMLElement[ "dataformats", {}, { "plaintext,minput,moutput,computabledata,formatteddata,formuladata"}]}\ ], XMLElement["subpod", {"title" -> ""}, { XMLElement[ "minput", {}, { "Reduce[E^(1 - \[Alpha]^2) (-1 + 2 \[Alpha]^2) + \[Sigma] >= 0, {\ \[Alpha], \[Sigma]}]"}], XMLElement["cell", {"compressed" -> False, "string" -> True}, { Cell[ BoxData[ FormBox[ FormBox[ FormBox[ TagBox[ GridBox[{{ PaneBox[ TemplateBox[{", ", "\", \"", RowBox[{"\[Alpha]", "\[LongEqual]", TagBox[ RowBox[{"-", FractionBox["1", SqrtBox["2"]]}], Identity]}], RowBox[{"\[Sigma]", "\[GreaterEqual]", "0"}]}, "RowWithSeparators"], BaselinePosition -> Baseline, ImageSize -> 550]}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, AllowScriptLevelChange -> False, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"], TraditionalForm], TraditionalForm], TraditionalForm]], "Output", { Background -> None, GraphicsBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics"}, DefaultAxesStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsAxes"], DefaultFrameStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsFrame"], DefaultFrameTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsFrameTicks"], DefaultTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsTicks"]}, Graphics3DBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics3D"}}}, CellSize -> {550, Automatic}, RenderingOptions -> { "3DRenderingMethod" -> "BSPTreeOrDepthBuffer"}]}], XMLElement[ "dataformats", {}, { "plaintext,minput,moutput,computabledata,formatteddata,formuladata"}]}\ ], XMLElement["subpod", {"title" -> ""}, { XMLElement[ "minput", {}, { "Reduce[E^(1 - \[Alpha]^2) (-1 + 2 \[Alpha]^2) + \[Sigma] >= 0, {\ \[Alpha], \[Sigma]}]"}], XMLElement["cell", {"compressed" -> False, "string" -> True}, { Cell[ BoxData[ FormBox[ FormBox[ FormBox[ TagBox[ GridBox[{{ PaneBox[ TemplateBox[{", ", "\", \"", RowBox[{"\[Alpha]", "\[LongEqual]", TagBox[ FractionBox["1", SqrtBox["2"]], Identity]}], RowBox[{"\[Sigma]", "\[GreaterEqual]", "0"}]}, "RowWithSeparators"], BaselinePosition -> Baseline, ImageSize -> 550]}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, AllowScriptLevelChange -> False, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"], TraditionalForm], TraditionalForm], TraditionalForm]], "Output", { Background -> None, GraphicsBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics"}, DefaultAxesStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsAxes"], DefaultFrameStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsFrame"], DefaultFrameTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsFrameTicks"], DefaultTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsTicks"]}, Graphics3DBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics3D"}}}, CellSize -> {550, Automatic}, RenderingOptions -> { "3DRenderingMethod" -> "BSPTreeOrDepthBuffer"}]}], XMLElement[ "dataformats", {}, { "plaintext,minput,moutput,computabledata,formatteddata,formuladata"}]}\ ], XMLElement["subpod", {"title" -> ""}, { XMLElement[ "minput", {}, { "Reduce[E^(1 - \[Alpha]^2) (-1 + 2 \[Alpha]^2) + \[Sigma] >= 0, {\ \[Alpha], \[Sigma]}]"}], XMLElement["cell", {"compressed" -> False, "string" -> True}, { Cell[ BoxData[ FormBox[ FormBox[ FormBox[ TagBox[ GridBox[{{ PaneBox[ TemplateBox[{", ", "\", \"", RowBox[{"\[Alpha]", ">", FractionBox["1", SqrtBox["2"]]}], RowBox[{"\[Sigma]", "\[GreaterEqual]", RowBox[{ RowBox[{"-", SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", SuperscriptBox["\[Alpha]", "2"]}]]}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}], "-", "1"}], ")"}]}]}]}, "RowWithSeparators"], BaselinePosition -> Baseline, ImageSize -> 550]}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, AllowScriptLevelChange -> False, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"], TraditionalForm], TraditionalForm], TraditionalForm]], "Output", { Background -> None, GraphicsBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics"}, DefaultAxesStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsAxes"], DefaultFrameStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsFrame"], DefaultFrameTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsFrameTicks"], DefaultTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsTicks"]}, Graphics3DBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics3D"}}}, CellSize -> {550, Automatic}, RenderingOptions -> { "3DRenderingMethod" -> "BSPTreeOrDepthBuffer"}]}], XMLElement[ "dataformats", {}, { "plaintext,minput,moutput,computabledata,formatteddata,formuladata"}]}\ ], XMLElement["subpod", {"title" -> ""}, { XMLElement[ "minput", {}, { "Reduce[E^(1 - \[Alpha]^2) (-1 + 2 \[Alpha]^2) + \[Sigma] >= 0, {\ \[Alpha], \[Sigma]}]"}], XMLElement["cell", {"compressed" -> False, "string" -> True}, { Cell[ BoxData[ FormBox[ FormBox[ FormBox[ TagBox[ GridBox[{{ PaneBox[ TemplateBox[{", ", "\", \"", RowBox[{ RowBox[{"-", FractionBox["1", SqrtBox["2"]]}], "<", "\[Alpha]", "<", FractionBox["1", SqrtBox["2"]]}], RowBox[{"\[Sigma]", "\[GreaterEqual]", RowBox[{ RowBox[{"-", SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", SuperscriptBox["\[Alpha]", "2"]}]]}], " ", RowBox[{"(", RowBox[{ RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}], "-", "1"}], ")"}]}]}]}, "RowWithSeparators"], BaselinePosition -> Baseline, ImageSize -> 550]}}, GridBoxAlignment -> {"Columns" -> {{Left}}}, AllowScriptLevelChange -> False, DefaultBaseStyle -> "Column", GridBoxItemSize -> { "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Column"], TraditionalForm], TraditionalForm], TraditionalForm]], "Output", { Background -> None, GraphicsBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics"}, DefaultAxesStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsAxes"], DefaultFrameStyle -> Directive[ GrayLevel[0, 0.35], FontColor -> GrayLevel[0.25], FontOpacity -> 1, "GraphicsFrame"], DefaultFrameTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsFrameTicks"], DefaultTicksStyle -> Directive[ FontFamily -> "Times", FontSize -> 10, "GraphicsTicks"]}, Graphics3DBoxOptions -> { DefaultBaseStyle -> {FontFamily -> "Times", "Graphics3D"}}}, CellSize -> {550, Automatic}, RenderingOptions -> { "3DRenderingMethod" -> "BSPTreeOrDepthBuffer"}]}], XMLElement[ "dataformats", {}, { "plaintext,minput,moutput,computabledata,formatteddata,formuladata"}]}\ ], XMLElement["states", {"count" -> "2"}, { XMLElement[ "state", { "name" -> "Approximate forms", "input" -> "LocusSolution__Approximate forms"}, {}], XMLElement[ "state", { "name" -> "More solutions", "input" -> "LocusSolution__More solutions"}, {}]}]}], Typeset`pod7$$, Typeset`pod8$$, Typeset`pod9$$, Typeset`pod10$$, Typeset`pod11$$, Typeset`pod12$$, Typeset`pod13$$, Typeset`pod14$$, Typeset`pod15$$, Typeset`pod16$$, Typeset`pod17$$, Typeset`pod18$$, Typeset`pod19$$, Typeset`pod20$$, Typeset`pod21$$, Typeset`pod22$$, Typeset`pod23$$, Typeset`pod24$$, Typeset`pod25$$, Typeset`pod26$$, Typeset`pod27$$, Typeset`pod28$$, Typeset`pod29$$, Typeset`pod30$$, Typeset`pod31$$, Typeset`pod32$$, Typeset`pod33$$, Typeset`pod34$$, Typeset`pod35$$, Typeset`pod36$$, Typeset`aux1$$ = {True, False, {False}, True}, Typeset`aux2$$ = {True, False, {False}, True}, Typeset`aux3$$ = { True, False, {False, False}, True}, Typeset`aux4$$ = { True, False, {False}, True}, Typeset`aux5$$ = {True, False, {False}, True}, Typeset`aux6$$ = {True, False, {False, False, False, False, False}, True}, Typeset`aux7$$ = {True, False, {False}, True}, Typeset`aux8$$ = { True, False, {False}, True}, Typeset`aux9$$ = {True, False, {False}, True}, Typeset`aux10$$ = {True, False, {False}, True}, Typeset`aux11$$ = { True, False, {False}, True}, Typeset`aux12$$ = { True, False, {False}, True}, Typeset`aux13$$ = { True, False, {False}, True}, Typeset`aux14$$ = { True, False, {False}, True}, Typeset`aux15$$ = { True, False, {False}, True}, Typeset`aux16$$ = { True, False, {False}, True}, Typeset`aux17$$ = { True, False, {False}, True}, Typeset`aux18$$ = { True, False, {False}, True}, Typeset`aux19$$ = { True, False, {False}, True}, Typeset`aux20$$ = { True, False, {False}, True}, Typeset`aux21$$ = { True, False, {False}, True}, Typeset`aux22$$ = { True, False, {False}, True}, Typeset`aux23$$ = { True, False, {False}, True}, Typeset`aux24$$ = { True, False, {False}, True}, Typeset`aux25$$ = { True, False, {False}, True}, Typeset`aux26$$ = { True, False, {False}, True}, Typeset`aux27$$ = { True, False, {False}, True}, Typeset`aux28$$ = { True, False, {False}, True}, Typeset`aux29$$ = { True, False, {False}, True}, Typeset`aux30$$ = { True, False, {False}, True}, Typeset`aux31$$ = { True, False, {False}, True}, Typeset`aux32$$ = { True, False, {False}, True}, Typeset`aux33$$ = { True, False, {False}, True}, Typeset`aux34$$ = { True, False, {False}, True}, Typeset`aux35$$ = { True, False, {False}, True}, Typeset`aux36$$ = { True, False, {False}, True}, Typeset`asyncpods$$ = {}, Typeset`nonpods$$ = { XMLElement["warnings", {"count" -> "1"}, { XMLElement[ "reinterpret", { "text" -> "Using closest Wolfram|Alpha interpretation:", "new" -> "-\[Sigma] \[LessEqual] (2\[Alpha]^2-1)e^(1-\[Alpha]^2)", "score" -> "0.3620689655172414", "level" -> "medium"}, {}]}]}, Typeset`initdone$$ = True, Typeset`queryinfo$$ = {{ "success" -> "true", "error" -> "false", "numpods" -> "6", "datatypes" -> "Math", "timedout" -> "Reduce", "timedoutpods" -> "", "timing" -> "9.21", "parsetiming" -> "0.627", "parsetimedout" -> "false", "recalculate" -> "http://www5b.wolframalpha.com/api/v2/recalc.jsp?id=\ MSPa37881gcb5e4he1a1ggec00001hdag8d2gcch079e&redisFailed=true&s=31", "id" -> "MSPa37891gcb5e4he1a1ggec000051ghhcbi563fb05e", "host" -> "http://www5b.wolframalpha.com", "server" -> "31", "related" -> "", "version" -> "2.6"}, { "success" -> "true", "error" -> "false", "numpods" -> "0", "datatypes" -> "Math", "timedout" -> "", "timedoutpods" -> "", "timing" -> "1.739", "parsetiming" -> "0.", "parsetimedout" -> "false", "recalculate" -> "", "id" -> "", "host" -> "http://www5b.wolframalpha.com", "server" -> "31", "related" -> "", "version" -> "2.6"}}, Typeset`sessioninfo$$ = { "TimeZone" -> 8., "Date" -> {2017, 11, 16, 3, 39, 38.0216178`9.332605477440016}, "Line" -> 67, "SessionID" -> 24589202992260183938}, Typeset`showpods$$ = {1, 2, 3, 4, 5, 6}, Typeset`failedpods$$ = {7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36}, Typeset`chosen$$ = {}, Typeset`open$$ = False, Typeset`newq$$ = "-\\sigma \\leq (2\\alpha^2-1)e^{1-\\alpha^2}\\leq \\sigma \\quad \\& \ \\quad \\alpha \\leq \\sqrt{-\\ln \\rho},\\sigma=0.1"}, DynamicBox[ToBoxes[ AlphaIntegration`FormatAlphaResults[ Dynamic[{ 2, {Typeset`pod1$$, Typeset`pod2$$, Typeset`pod3$$, Typeset`pod4$$, Typeset`pod5$$, Typeset`pod6$$, Typeset`pod7$$, Typeset`pod8$$, Typeset`pod9$$, Typeset`pod10$$, Typeset`pod11$$, Typeset`pod12$$, Typeset`pod13$$, Typeset`pod14$$, Typeset`pod15$$, Typeset`pod16$$, Typeset`pod17$$, Typeset`pod18$$, Typeset`pod19$$, Typeset`pod20$$, Typeset`pod21$$, Typeset`pod22$$, Typeset`pod23$$, Typeset`pod24$$, Typeset`pod25$$, Typeset`pod26$$, Typeset`pod27$$, Typeset`pod28$$, Typeset`pod29$$, Typeset`pod30$$, Typeset`pod31$$, Typeset`pod32$$, Typeset`pod33$$, Typeset`pod34$$, Typeset`pod35$$, Typeset`pod36$$}, { Typeset`aux1$$, Typeset`aux2$$, Typeset`aux3$$, Typeset`aux4$$, Typeset`aux5$$, Typeset`aux6$$, Typeset`aux7$$, Typeset`aux8$$, Typeset`aux9$$, Typeset`aux10$$, Typeset`aux11$$, Typeset`aux12$$, Typeset`aux13$$, Typeset`aux14$$, Typeset`aux15$$, Typeset`aux16$$, Typeset`aux17$$, Typeset`aux18$$, Typeset`aux19$$, Typeset`aux20$$, Typeset`aux21$$, Typeset`aux22$$, Typeset`aux23$$, Typeset`aux24$$, Typeset`aux25$$, Typeset`aux26$$, Typeset`aux27$$, Typeset`aux28$$, Typeset`aux29$$, Typeset`aux30$$, Typeset`aux31$$, Typeset`aux32$$, Typeset`aux33$$, Typeset`aux34$$, Typeset`aux35$$, Typeset`aux36$$}, Typeset`chosen$$, Typeset`open$$, Typeset`elements$$, Typeset`q$$, Typeset`opts$$, Typeset`nonpods$$, Typeset`queryinfo$$, Typeset`sessioninfo$$, Typeset`showpods$$, Typeset`failedpods$$, Typeset`newq$$}]], StandardForm], ImageSizeCache->{1802., {1178., 1205.}}, TrackedSymbols:>{Typeset`showpods$$, Typeset`failedpods$$}], DynamicModuleValues:>{}, Initialization:>If[ Not[Typeset`initdone$$], Null; AlphaIntegration`DoAsyncInitialization[ Hold[{ 2, {Typeset`pod1$$, Typeset`pod2$$, Typeset`pod3$$, Typeset`pod4$$, Typeset`pod5$$, Typeset`pod6$$, Typeset`pod7$$, Typeset`pod8$$, Typeset`pod9$$, Typeset`pod10$$, Typeset`pod11$$, Typeset`pod12$$, Typeset`pod13$$, Typeset`pod14$$, Typeset`pod15$$, Typeset`pod16$$, Typeset`pod17$$, Typeset`pod18$$, Typeset`pod19$$, Typeset`pod20$$, Typeset`pod21$$, Typeset`pod22$$, Typeset`pod23$$, Typeset`pod24$$, Typeset`pod25$$, Typeset`pod26$$, Typeset`pod27$$, Typeset`pod28$$, Typeset`pod29$$, Typeset`pod30$$, Typeset`pod31$$, Typeset`pod32$$, Typeset`pod33$$, Typeset`pod34$$, Typeset`pod35$$, Typeset`pod36$$}, { Typeset`aux1$$, Typeset`aux2$$, Typeset`aux3$$, Typeset`aux4$$, Typeset`aux5$$, Typeset`aux6$$, Typeset`aux7$$, Typeset`aux8$$, Typeset`aux9$$, Typeset`aux10$$, Typeset`aux11$$, Typeset`aux12$$, Typeset`aux13$$, Typeset`aux14$$, Typeset`aux15$$, Typeset`aux16$$, Typeset`aux17$$, Typeset`aux18$$, Typeset`aux19$$, Typeset`aux20$$, Typeset`aux21$$, Typeset`aux22$$, Typeset`aux23$$, Typeset`aux24$$, Typeset`aux25$$, Typeset`aux26$$, Typeset`aux27$$, Typeset`aux28$$, Typeset`aux29$$, Typeset`aux30$$, Typeset`aux31$$, Typeset`aux32$$, Typeset`aux33$$, Typeset`aux34$$, Typeset`aux35$$, Typeset`aux36$$}, Typeset`chosen$$, Typeset`open$$, Typeset`elements$$, Typeset`q$$, Typeset`opts$$, Typeset`nonpods$$, Typeset`queryinfo$$, Typeset`sessioninfo$$, Typeset`showpods$$, Typeset`failedpods$$, Typeset`newq$$, "http://www5b.wolframalpha.com/api/v2/recalc.jsp?id=\ MSPa37881gcb5e4he1a1ggec00001hdag8d2gcch079e&redisFailed=true&s=31", Typeset`asyncpods$$}]]; Typeset`asyncpods$$ = {}; Typeset`initdone$$ = True], SynchronousInitialization->False], BaseStyle->{Deployed -> True}, DeleteWithContents->True, Editable->False, SelectWithContents->True]], "Print", "WolframAlphaFullOutput", CellChangeTimes->{ 3.719763578818941*^9},ExpressionUUID->"8c954ef4-9b00-4f0e-aa05-\ 21d538847f08"] }, Open ]], Cell[BoxData[ FormBox[ RowBox[{ RowBox[{"-", "\[Sigma]"}], "\[LessEqual]", RowBox[{ RowBox[{"(", RowBox[{ RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}], "-", "1"}], ")"}], " ", SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", SuperscriptBox["\[Alpha]", "2"]}]]}]}], TraditionalForm]], "Input",Expre\ ssionUUID->"69305c0e-90cf-4df9-bf4b-0f9c5fa29d61"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"-", "\[Sigma]"}], "\[LessEqual]", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", SuperscriptBox["\[Alpha]", "2"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], ")"}]}]}]], "Input", CellChangeTimes->{ 3.7197629370325203`*^9},ExpressionUUID->"c09f2d78-19cb-44a5-bd00-\ 00ccdb1ee483"], Cell[BoxData[ RowBox[{ RowBox[{"-", "0.1`"}], "\[LessEqual]", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", SuperscriptBox["\[Alpha]", "2"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], ")"}]}]}]], "Output", CellChangeTimes->{ 3.719762937157883*^9},ExpressionUUID->"911cbfbc-7ccb-40ff-8b24-\ fa1a16bd5d75"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"\[Sigma]", "=", "0.25"}]], "Input", CellChangeTimes->{{3.71976291929698*^9, 3.7197629333984065`*^9}, { 3.7197639923748255`*^9, 3.7197639924869194`*^9}},ExpressionUUID->"8074f209-747e-4b5a-a011-\ 8c11cea30152"], Cell[BoxData["0.25`"], "Output", CellChangeTimes->{3.7197629347610035`*^9, 3.7197639974273605`*^9},ExpressionUUID->"a75e1029-19cd-4e59-9776-\ b467803a2e33"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{ RowBox[{"-", "0.1"}], "\[LessEqual]", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", SuperscriptBox["\[Alpha]", "2"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], ")"}]}]}]], "Input", CellChangeTimes->{ 3.7197629470205507`*^9},ExpressionUUID->"a99de783-e963-4793-8bef-\ d52ad258cd7c"], Cell[BoxData[ RowBox[{ RowBox[{"-", "0.1`"}], "\[LessEqual]", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", SuperscriptBox["\[Alpha]", "2"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], ")"}]}]}]], "Output", CellChangeTimes->{ 3.719762950985449*^9},ExpressionUUID->"93594022-f597-490c-baf5-\ e7e9ff23cb05"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{"-", "0.1"}], "=", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"-", SuperscriptBox["\[Alpha]", "2"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], ")"}]}]}], ",", RowBox[{"{", "\[Alpha]", "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.719762981300766*^9, 3.7197630088900166`*^9}, 3.7197638393355246`*^9}, NumberMarks->False,ExpressionUUID->"4a25149a-25a1-40f7-90a1-69e87e4ee359"], Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"-", SuperscriptBox["\[Alpha]", "2"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], ")"}]}], ",", RowBox[{"{", "\[Alpha]", "}"}]}], "]"}]], "Output", CellChangeTimes->{ 3.7197638423803167`*^9},ExpressionUUID->"777bf915-6d35-481e-8bb0-\ 1cd9450c2c1f"] }, Open ]], Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{"Abs", "[", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", SuperscriptBox["\[Alpha]", "2"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], ")"}]}], "]"}], "\[Equal]", RowBox[{"-", "0.1"}]}], ",", RowBox[{"{", "\[Alpha]", "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.719763013493215*^9, 3.7197630480197268`*^9}, { 3.7197630927775483`*^9, 3.7197630988460217`*^9}},ExpressionUUID->"7a8c89f3-0e13-4658-a1bc-\ d68e453b5960"], Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", RowBox[{"Re", "[", SuperscriptBox["\[Alpha]", "2"], "]"}]}]], " ", RowBox[{"Abs", "[", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], "]"}]}], "\[Equal]", RowBox[{"-", "0.1`"}]}], ",", RowBox[{"{", "\[Alpha]", "}"}]}], "]"}]], "Input", CellChangeTimes->{ 3.719763109060239*^9},ExpressionUUID->"1bac7775-4cfa-4409-b54a-\ 96f2f58f2749"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", RowBox[{"Re", "[", SuperscriptBox["\[Alpha]", "2"], "]"}]}]], " ", RowBox[{"Abs", "[", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], "]"}]}], "\[Equal]", "0.1"}], ",", RowBox[{"{", "\[Alpha]", "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.7197632139848394`*^9, 3.7197632193049383`*^9}},ExpressionUUID->"e0203d6c-9287-4a2e-972b-\ df0123707b40"], Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", RowBox[{"Re", "[", SuperscriptBox["\[Alpha]", "2"], "]"}]}]], " ", RowBox[{"Abs", "[", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], "]"}]}], "\[Equal]", "0.1`"}], ",", RowBox[{"{", "\[Alpha]", "}"}]}], "]"}]], "Output", CellChangeTimes->{ 3.7197632163219924`*^9},ExpressionUUID->"5a538ccc-2b5c-4154-84aa-\ 7fc07f1618fb"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"NSolve", "[", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", RowBox[{"Re", "[", SuperscriptBox["\[Alpha]", "2"], "]"}]}]], " ", RowBox[{"Abs", "[", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], "]"}]}], "\[Equal]", RowBox[{"-", "0.1`"}]}], ",", RowBox[{"{", "\[Alpha]", "}"}]}], "]"}]], "Input", NumberMarks->False,ExpressionUUID->"26d5225c-91db-49a0-971d-8ad263ce288e"], Cell[BoxData[ RowBox[{"NSolve", "[", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", RowBox[{"Re", "[", SuperscriptBox["\[Alpha]", "2"], "]"}]}]], " ", RowBox[{"Abs", "[", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], "]"}]}], "\[Equal]", RowBox[{"-", "0.1`"}]}], ",", RowBox[{"{", "\[Alpha]", "}"}]}], "]"}]], "Output", CellChangeTimes->{ 3.7197631134905405`*^9},ExpressionUUID->"8745c525-2bdb-4684-a7bb-\ e756b86cce2e"] }, Open ]], Cell[BoxData[ RowBox[{"-", "0.6859689924363277`"}]], "Input",ExpressionUUID->"accb0ecb-f84f-41d5-93d6-c1edef7935bf"], Cell[BoxData[ RowBox[{"NSolve", "[", RowBox[{ RowBox[{ RowBox[{"Abs", "[", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", SuperscriptBox["\[Alpha]", "2"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], ")"}]}], "]"}], "\[Equal]", "0.1"}], ",", RowBox[{"{", "\[Alpha]", "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.7197631341573668`*^9, 3.7197631567046766`*^9}},ExpressionUUID->"d6a0d96f-f412-4fb2-8a5d-\ b3102080b50e"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"NSolve", "[", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", RowBox[{"Re", "[", SuperscriptBox["\[Alpha]", "2"], "]"}]}]], " ", RowBox[{"Abs", "[", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], "]"}]}], "\[Equal]", "0.1`"}], ",", RowBox[{"{", "\[Alpha]", "}"}]}], "]"}]], "Input", CellChangeTimes->{ 3.7197631634404*^9},ExpressionUUID->"9369dca9-cc8c-4024-b61c-2288481b7eb0"], Cell[BoxData[ RowBox[{"NSolve", "[", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", RowBox[{"Re", "[", SuperscriptBox["\[Alpha]", "2"], "]"}]}]], " ", RowBox[{"Abs", "[", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], "]"}]}], "\[Equal]", "0.1`"}], ",", RowBox[{"{", "\[Alpha]", "}"}]}], "]"}]], "Output", CellChangeTimes->{ 3.7197631636130915`*^9},ExpressionUUID->"3b595e36-ecd9-4f36-9052-\ 389017630dba"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"FindRoot", "[", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", RowBox[{"Re", "[", SuperscriptBox["\[Alpha]", "2"], "]"}]}]], " ", RowBox[{"Abs", "[", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], "]"}]}], "\[Equal]", "0.1`"}], ",", RowBox[{"{", RowBox[{"{", RowBox[{"\[Alpha]", ",", "0.7`"}], "}"}], "}"}]}], "]"}]], "Input", NumberMarks->False,ExpressionUUID->"01de2042-82b4-4fd6-9fe1-5dbbdfcd1fde"], Cell[BoxData[ RowBox[{"{", RowBox[{"\[Alpha]", "\[Rule]", "0.6859689924363278`"}], "}"}]], "Output", CellChangeTimes->{ 3.7197631785355964`*^9},ExpressionUUID->"5ab11d51-d0f8-4531-89e5-\ 19312b55308c"] }, Open ]], Cell[BoxData[ RowBox[{"NSolve", "[", RowBox[{ RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", RowBox[{"Re", "[", SuperscriptBox["\[Alpha]", "2"], "]"}]}]], " ", RowBox[{"Abs", "[", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], "]"}]}], "\[Equal]", "0.1`"}], ",", RowBox[{"{", "\[Alpha]", "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.719763153579788*^9, 3.719763153620742*^9}},ExpressionUUID->"8c9e8405-8e9a-4337-b262-\ e6f0b001beae"], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{"0.1", "==", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", SuperscriptBox["\[Alpha]", "2"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], ")"}]}]}], ",", RowBox[{"{", "\[Alpha]", "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.7197632282821627`*^9, 3.7197632298262024`*^9}},ExpressionUUID->"fbe1f173-792c-4711-bb28-\ d84afc5b6533"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\[Alpha]", "\[Rule]", RowBox[{"-", "2.3729814151101762`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Alpha]", "\[Rule]", RowBox[{"-", "0.7288967462376136`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Alpha]", "\[Rule]", "0.7288967462376136`"}], "}"}], ",", RowBox[{"{", RowBox[{"\[Alpha]", "\[Rule]", "2.3729814151101762`"}], "}"}]}], "}"}]], "Output", CellChangeTimes->{ 3.7197632315661416`*^9},ExpressionUUID->"51ae21f5-4a5d-46ab-b0d9-\ d1e2462dbc03"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Plot", "[", RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", SuperscriptBox["\[Alpha]", "2"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], ")"}]}], ",", RowBox[{"{", RowBox[{"\[Alpha]", ",", RowBox[{"-", "2"}], ",", "2"}], "}"}]}], "]"}]], "Input", CellChangeTimes->{{3.7197632886981754`*^9, 3.71976330802324*^9}},ExpressionUUID->"8494df0a-4de5-43fa-81b0-\ ba3362aad6d2"], Cell[BoxData[ GraphicsBox[{{{}, {}, TagBox[ {RGBColor[0.368417, 0.506779, 0.709798], AbsoluteThickness[1.6], Opacity[ 1.], LineBox[CompressedData[" 1:eJw1mnk8VP/3x22DVLZKKaFCtkSWLHFaaFHWiJCtLFGSKKFIFC0SKiREUXYR ZXvfikhK9n3Lvs/cO2PPfO/n8fj9/pl5PB9z3+9z3ue8zjlzZ+4OxyumTmws LCxy5Mt/7wogNMFkMtFmowCeZYNWuLK4K2xxiYlGA/Rfczi2Ql6BkhTBYKIP urHSW6+3wj5pA8eRSSb6BIqUi4mtsF8gpLOujYnUN011PptthYODtNq4XCbi 0jyBy8a0gen9X5nKdky08axRx/6RdrhRH3LZpWIVSWZybj6T3QXNzWsnvjj8 Q3luog7akgOwHbuycb/ICrJXndl2/uEQfHSvpPD1LKFA42tnrwuOgf0jJWpH 8CIaqK80FWJMwkKUfxiCBTRvozml7TkLoyJfJo5qLqBztL3z2bdnoTWN0+C3 ygLC5q51CD2ehYKSpwI9Mgsoal7sT+P7WfD4mx6/tGEBzT0tUKf9nYVBpeYs 1bF51HemKa9Thgq//8g3ZEbOI+eTiZMOL6hQZuWlrPxwHg0c8UwVTKRC5lDx s5LQeSQf1Ope8YYKYQuHrX74zaNLJl6sXB+ocET87ODIhXmkVavOYV1HhU9X Qhk7NObR/C+JmxwsNEjl7RWOHZhDL+bpyevO0yDKGrg0uueQjUm1w7QrDYLf JdM7WucQ56mz/6o9aOB4+Hz9tro5lLST/sLNjwY7r4+FJBXNISPHcvELT2mQ 0oPPpj2cQyP2mSmiFTRIzuL6/lF1DiWXPqlzEMQhctG14IziHKKNUegum3EI OlqbPC87h1JMS8OdRXCw73/kryE+h/6ovWw4JYWD2EZBpXKeOTTsVRpRpoFD or9IQmUfA8lFe8WI2uGQoK/k1RTOQD8qY6RfpuIgsVa/9k8IA8mcE1cwS8ch 86fjzt+BDNSv4H2WkolDyamYxhofBlK2tFk2+oBDh+H8vgoHBrrzyNchFMNB 6HQ58U6DgaY/9di7dpH2NrSeTFNhIKsfTSeTenGQbJ5JTd3LQPKhMpW/BnBQ MRc3S5RkoJCcPjWBMRxMLe4WRgsw0NtFtq1KdByeWJ/wuT1OR/bnH4fW8RAg JOL4y3+IjjpcTBpurCcgsdtP8mYf+XmDh+BWfgJyzmW1XGuho+qQJsMjmwio s+NTu/iFjtT3WqbvFiPATFw6wrmMjvySiZjwHQR09R8cOV9MR+d/68r/3UXA hIPXc9tsOrojYLLvhjQB3Bda5k7H0VGMm0vMXiUCIiVmDE1i6Ci/fqVaT5mA zcOc6YZP6Khdj8PKVJUAKWd1ixOhdPTl8vg1Qw0C9FxfFutcpaN7u1Z8Gw6S /kgX8h24REdXMzji4w6T/ozXuWi40BGfd+FvC10CLritblY5R0cvv/0yKDpG QPAlB1+ZE3T0NaQmccmAgN4I24SSI3QUzvM0+qkRAZr51thJHTr6/GxnqIgJ ATjDnNtDmY50RCP38poRYLjltDxzDx0dsZ3+421OQIamsXGkNB2BsdDB+jME OATqx37YTkeFTxct7c4SUPb6WNmRLXQkZG0+GWNFwJZK3f5mQToqpyGRCmsC /nCD9DwXHVklKytMniNAXu7AqTA2OpIaYJmfsSUgzEDDU/gfgVJdnRRH7Ag4 GKX8SQsnkNOe3O85DgQkFCp2100RaA26tS7IkYCF1j0stqMEUnctitE9T8Zj UVZidoBAU/ydp1dIztsmfTyom0DdGR466RcIWKcjeUmgjUCJeszjek4EuNrv jExpINDQThHXVpIrg8UKlesIlFdrFWnlTIDYW5H2yu8EShA7U9RAsl+18Ir5 FwLJXsv5reVCQOu4kPhoKYEE4tf8jiV537qNur5FBEpn2fB+jOQIBQHXNfkE 0kb+ZnKupD6MeR/FZxLoUc5SpT3JR6+tzZNLI5BawKnZMJJTnnE3lyUTSAUp 16SSvFpMWTB4SZ5/3U3dfJKtOtlE+p4RSHjtpOV/XLTCBM9IAiWF2y79d72g 2L/zrA8JNPw0Z3s4yR6Hlu5HhRJo6+2y4v/s1Z6fz9wVRKDT6z3LZUmWukev L/Qj/fMt3jVK+hv8jkbo+RCoMfR+3zOSe2pnNrddIdcndw2rkaw+Panl6kag 0bGPcrVkPGL4xu0WLxAozVAszYhkqtLI3Qd2BJJ5vVu/moznKbPB9G1WBApO G16nRPK76/0/s8wI1LH3xuAjMh8ccT2z2kYEMlVg/dZJ5qusp22/vS6Bnl8q unqKzO8WlhZrmg6BaieM5DzJ/HvvbAwM1iBQf0jF11B7Uj8uddVvFAjk2XrC /t5/+gn/MakqQ8ZHUMDkKqmvoczvfNW7CCSYwMYwsCH1Q8UsxrcQSPkxn3w3 qdcFwQp/vw0EsrfbmPHYktSPamnSWl4CbQsSyle0IPXi93F0DzuBNNeD4kmy HvzZM254TePo7j+5P3/IevKIs+W0H8NRdTDLiNwpAhz3bnhmMIgjoQBWYT99 AvStAz5Id+Aomu/cx9mj5HkKDKd7K3EkHVvdrwPk/ifYA+oQjkYWti8qaRPA 7C3mKSnB0ZWplanNWgSM8OyQfpaHo58d3MfK1AgodCQcTybgyOZM/6DTHjKe C+k09Rc4yhn5Mz8jS8DLCJsgqSgcfQj0Sncj+09wSdUr1jAcKepcKtEg+5OJ YGx78TUcOU05tahuIWDmywFDiZM4kmMsySYxcfhrQesWOIqj7rFH5wxXcGiZ fuvOPIij3p+r+bMLOJQJ84V3quFIO0AplRvH4eHVgW+RO3H0cHNoV9QgDtI7 7mn8W6QhRWqpM1slDiLFmjUTdBp6oqRo9QfhwGcwe6Z9lobu+BitPinFYc7X 0rtgmIaMZO5pD5HzoPKPbO7FBhpiSSvo7kvGwSGoXqL1HQ25MO2Gt/vhcKYj SacnlYYyYitStvvgoL/P03IokYYu5a9q8XmS82CI/xEeQ0N8wD1Z7YQD93FT gvcODekXp72MMMYhh6/ly7GzNHSDY8Tt0i4cUl3fdhma0VBf8ge9+9txiP3i wzA3oiHWDX5vosn5eOeakMwFPRqy/+PcEbQWB7M2i8ggJRpKFOaKzsJpsJzY aft5DQ0Jx6os65Lzljqf4YtxkP4KFH31KabBkLF/VDWTil6m1WEv8mjwm03k ewuDih5KDBrmppDz2vncHnyAikKsrdTl79HguEL/smwJFRVSHkef1afBs/Lh 2AQ3Kuob/+vlUk0FW9/42/udqEjm8fM7i+VUkFY2utBoR0W/ZY/H3yykQsm7 T3u5zalI3fJN55HXVOiNfvj9GlCRwQPJfSx+VNjtpkTX30hFPhtXDDdJU8Fr z1Ii7j+LVA8NHNWangGO1PNu0ldnkclhPf7Wlhl4vuWXqq3zLOp6paV7qmIG StmT634YzyL161h/bQR5fafeUrLkLGKlrE/nVyCvv/fU3Kh+BsVrTn8rc5qG kj7pdVk7Z5Boe1hg1OdJCDjAmh2/ZQbpqKcl+yZNgnZch0E47wx6HCvaqxM6 CZjpgyfOS9Oofe3wR3fjSaiumhTc0TiNAkfNhY4NT0BzZo7w8zvT6Pj6GwTn mgmYuaGyO6h/CpX9yCqrVB+DXfwHD5slTqJwoxFdH80hiFAc8HOLnkT+kR0K WZuGYME4uCAobBJZle5yR9RBqHtaKZHtNYkMi+P4/dMGwXvDCS7OY5PI7fhw 1HH+QfguZFpXPDuB6DM6aid6BsBt+4Uz2w5NoPopPpeUkl74IBvm9ndwDOVt fWhzhGiCvqp8cTW1EeSV6nl2SD8XDcs/24eKBtEVx/1xXdndSOD2ezUF1gG0 9m732vSHU0hebVb+LdGNHg6uK1+apaO7utN/Pvu2Iaf29sRPtcvo6/EpI5Xz bcjbQ8jXcGgZsRhM/s4xaENKHstZbf+WUYD5eF3qzja08HUU+6a4gq47D9c8 rmtF4bZHPzKfrSDXsB7MQbwVabUdXEc99w+dqvuVt6amGT3W6z62+ncVbTLL iTy7uRF9M1tnLdvLgn2Qeliix96Ifqntkz8yxoIZL7oMKc02IDNW/R+ncRbs QeIOdZ7qBhQ/3nbIhpMVWx2L6Su53oDOdz7bvUaBFRu55a8g0voHXTxUXljr z4p5GD2NLZepR8j9Z2k2Pxv2jq4/9Yy1Hu3ZttY5R5gN+xvHcdCj4zcSzywt f7uTDTszdGNUNPw32saIPO2rwobBTVu1oLFfaNL8454sCzaMP1Wu+XB6HZpt r7U+lsCGfZir4quRqEXnJWbMN4iyYxEZKV91Fn+gTSI+3Hek2DF320Cfj79+ oAZr/ri/CuyYxHf1rpTrP1BUVYfCHWDHnj/LTLtVU4OYkn93y9mzY34qT7WV L1UjE8n207JJ7NiZscvU9wer0fD9l7ENaeyYcoJ+qvimamT0tUj2Ug47NsXO sYa34jsK14jb6F/Ojtk2XW8e4/uOwClCgNnJjh32snFPLKhEHj1NV2M3cGCi Uhqim8IqEZbIk+K5lQNb7tjU8NCmEjVn+CVo7eDACg/Vq92kVKILo3sb3itw YFICh9nMLL4hvjhtp5HjHBhP3u64NctfkGTq/a8dfhzY267hx+MhFej56VOf fJs5sM4AoaRXyhUoVW3fHb0ODoxX9Fieyd9y9D1dlZuzlwO7bv+u8TOUo2jR VG3HUQ7s6LDb5gdLpUimR6Ty3iIHNjYzmyzr+RkF7r1jEbCNgolEin/oFf2M Ln6Z+xssRsGMlUy+Rf36hGgjh0cCdlGwT9c+DC/JfkLD/X66J+UoWPiCt+zP 4SJk5DyMG2tSMFm2pQJ360KkiId2r5hTMNtU2SoxnkJUXxW8U+MsBYvStW5t +lSA/HdfTXO1oWBL98oWtIQK0LtOR+vXjhTs59pA7XUN+cjUXnLXTQ8KxpKd a4gF5iMNxQFWo6sUTMWw385bIR+FdFlxbvGmYAmRh4K7H+YhmpKDz92bFKxd ljvi7OMcZPQgIBndpWAHL1/M+zKRjdZvi3RQuEfB3uXWNsocz0aj7ueVI8Mo 2E2Vx5uX2LLQfD1iyj+mYFt1BF/H+75HlhsvLNc+o2DBQde+sbW+Q+cC97I1 vqBgk1+bh92U3yGBB4tcdXEUrOzYC1mtmTRU4JnMHfeKgp0zESnsOv8GXYai 98/fULApgqHhU5mK4k4/8tiTRsECntcjXslUdCOV9rY4nfS/K/jnoZHXyFEx 0Dktg4LJ37Yx6Tr6Gv2+8GeKJ4uClYqrtXmnJ6OAarZ+x2wKVvizscqoIRFF l/3lms6lYM389xqCo14hoYitmmL5FIww1+j5eDoBXeY73qz7gYLt60+ib2uN Q3tfix5wK6RgJpKnWYxexKK2ywVcbh8pmKcb57pgyxcozmnT/nNFFCyXfmnX WGcM2h2ZWL79EwX7rSG+d1tCNLoos2HDJMkzt5s0Dc9FIc7y2ZrMzxRsfeW9 o3dEn6LJRzd77UoomKWg9xtX9AQxNrGd5iqlYC8SOkt/H3qM2vhHJVNIbpU6 1KRS+QAteEWdUSyjYBvz0yfij4Yh3St+Q/kkn9biZWP9EYr6r++olyon9VLl Lexy8i7q0BASekLyH6MuxV+/glBpOvFpgmTRwruRzskBSIRqX6xRQcFe1hij fW9voA13BQQCSN7Ss31m9b0Xei1QVZVPstxgi8bzc+6IK+JYSyfJUus8Xyi4 OCBe+aswT3JQs3Tztm8GSNtBioMLkfng63Gj7FEB5pDFLh6SW2nBSfwLlvAh j+0VC8lUo934FS9nKGTuvTpBrvePPlrrruIJpkaMpGqSV2/ffJm01wfe2XrL xP63v1vWpSZZP/BV6FpvQzL7mT5tLqlAmGK5YLCB5G/i4fdf8QfDwbPmY+Xk +UKe7/TcHxEC7susfdYkH11XZtmw9j68n6xRmibjxRVsfsg9PByWL28auEpy zfyMDIXrEcRT7KbHyXg/uBwmmBQSAQbeMhbmJKfRIm+J3ImE0s8cYoVkvlxc ZJ2LVqNAcsHt50kyn8d33rC6qx0D8aKn80PIfEv3fDM0DngG496cC3nFFGzC 9Nz+icUX4PeAL3OQ1E/t+gy5YvU4ED4sITxB6iuzZk4s5EY8TG4OnhwsoGCX dCK5RRkJwG29/Us+qU+Dxe6VCeVEyHby/x6aR8EUCmVoxV5JYPr9vIoBqeeF mIEp6YVkqGuMNywi9f+Zx7/lq08q7EupSKaR9ZO8Z1NT7s43MPyc55bOWwp2 zzj3T0L9G8A7bsUEpFIws+eDP6/LpAH+dTqgLonMz45TX2V73sFTfynPUrJ+ 23RH0OYH70Es2s0hiqzvCpegco79GSAclJdkFU3BHmYXfuqNzATNj5fWowhS Hxrbc6N0c8COcmOhLYSCrbMpzgqk5cCEhWSCRjBZb7dNMi4l5kLFm66UR4EU zP7vV9NdAXnAaZs4zOlHnk963uBfSz4kbK6LO0X2sx8Fdrr54YWws16zXMyM gh2okv+2u78QbKWrdsYZU7C81sVDiWof4dDgl10cBhTs+WI0PBz8CPYTLty5 ehTsAtRoOmkXQ4uhbqOlGgVj1ioqCdM+Q39t/0mWTRTMq/tf7pNjJXCJ0XPt GT8FG5muVeBMLIH7E6OBIusoWB2/kzyhXwre496WLOwULP5M3O5fb8pA3kHi lRiVA1P9yyp6xxJBqk+g6pdqDkyhxIKm+B7BkpQ7e+NXcj5FZVf2LyJ4+eNK c2s5B7b2dZZqsgEGtbzO0WUFHNiKsWU3cwaDsqsL/IuJHFhPXq4MUvoKzyZf P9G8xoEledpWahdXguyfrXyc5HxMsFmT86yvEpZ/C8S+XseBxR4vfDHNVQXd 2jGtSpwcWKQ4j/sryyoYzz7/WHGRHQv681Hg32IVhM1HxaT3smMOiuvtyg5U g81wUMWddHZsF7V0UfPrDxBuNjkkpMSOBfw6EkKf/gEuu2Jjc6TZsdaMn7w5 wrVgbBSWpynOjj1w6tq142otRGz/fVyBjx2jdi4ZcIn/BEPt57IhU2xYRZVG StOtOsidbzpLvGHDrF4W61/SqIe30Zt27F7Php1I7fhlaNkIxf1xlcfKWTBq aI5z1eVGGGV1fGDxgQWLdb3L1LrbCL6OgTK26SzY2J49SjI5jRCgZrrT+CkL FvYpKIadowmsw7WP1lxgwWp+7bb+lNsEHwSf5W7gYcGOLfiM7eBqgaYyz6jW hFWkZyDIzvjYBsnYo6Pv7yyjJ3ZtQYrF3dBSlMJqq8NA1Ybb1xsLDkAtMs6s VpxC0zs23W6MHwT1566yq3U9yMdbzuGJ0Ah4iHM/OmtViNq6+U2da8bA1biI X5+vCfQfOrV7N45BZd5Kz4BjE5RplNje7R4DZuaZm3pFTZD8/Lx7MnUMZiwo N6/YNP+3LqRzyziwJcgd0U9rgaVv1sWGF8dh5ZyZxOLedhDJTBPZzzMBEtLH +7W29kDE2eUUvY0ToHX7fSKHSw+wcBvLmIlOQGN5//uYgh4YurCoenXfBPxW CZbhOdUL2aKnjDKtJuCA1T7PY359oBNFuyOWOQGJR0MiFob7wf7mgVGuU5MQ WjM5lLRjEGQv1LTMnJmE1YbkqGPHBoEwNKtscZiEvusTtJ+XBuGexKXXqTcm 4WWt+yO34kHIqn9pDamTcLlcJ+ef/hAsSi7XX1+aBMOcHXs93YchqvHzp+F3 U1Cxp4H8qjgKNuV66XUFU2CpVnfN6sMoSL5reFZQMQWff6wUWjeNwqdb4153 mqfgIsf12dmNY9ArLbxnO8s0WHZ7uds+HwPZQN/XZhbTIKW4zdggahy+ye1/ 8I0yA5Yy4hP6HpNgu9cslcY3A3ufjV6cDJuEhX1Xy8S2zgBt3ydjd9JPec3M GX/yvoszv/LkmvZJiDkudlrFYgZyUuR+lMMUODtxibx9NwPjl1R7uNZMA3dS W/a9k7Mwnv5oh9jdGUhJoX8vNJ+F/YJWRzLjZuBAmkD/X7tZuKB0/LdQ3gx4 Zp8UBO9ZOLrvlPSj7hnoKEXX5xNm4UGijhJVeRYy2tPBdWYWVO2ixZK7Z0Fq TdnYm+NUcAuNWu1+QAW8WsEtxYAKYRUrr2eiqVBx7/VkkikVnN9kdFATqHCG 4/5MvA0VvqxdK1CdQ4VQpgk90pMKGT9MaCUNVBhijDIDYqkQoqWt8G0jDfIK re74vaICsybpTp8IDQKu/WLzTaFCtfL6hCkJGmykfaBcyyL3Lb6h0qFCgyNT t9ZexKiw/uxJ65XT5P323w2bzceocIh/y+jlJzTweH0v1nSaCk+M4nxin9NA 035R2Binwl0zN57CVzRo7OkVOblCBUOpK5YVmTRg7Xi/8xA/DXbbFrGJV9PA vh4U9qiT9/W29i+3LdNge5m7HiWMBrydDbeFLHHYKLy05PGYBuuXW9b1nsNh 3fWwvPYoGtRt5i+JOY/Dyt6327JIO4vF9k/qPXDoTO2lmRbQ4FAEH8M/BIfn D00Sk3tpIGjSZl6UhUPEWN9pniEanKbssb+Wj0Oonsca73EaHC4v5RAvwsGb +cD7GJ20t2a99nGEg+m1Sv2ZNTjkvp03bvmDA6/1/nktVRxEa2odxqk4cH6q ynqricPQiNRiKh2HfxvNHPkO4sBPdfxguIDD1G/PX3/1cVBSZmZ7M3GoPZyR Gm6Pw+mojkr29QR8TVI/SziRfu2aczrIT8Dnle+859xxWM3bdvXyBgLeFQ3e VLyOw3LhhYlYYQLuy243bnuIQ4a752U1SQJu38+kHHqKw5vQtefndxNwfUij NOM5DnfzQ9a/lyXAOfGM1O3XOPh8107v3UuArmDkikQxDrcN5JajNQg4cEX0 Q0QZDj8i/7zp0iJAuS7LZeELDv7bM4036hCw896Pxp91OLQfcGi1PEwAyxLb e6+/OPj+upW7V58A+8EOInAUh2ObzRgDJwnA6vJ0Hk/hwPqe++p9AwKCkmyb 0+fI9dQ52SxjAvrDVMU+LuPQIFN0U86UgINe69y+shAwG2UrlniaAKZuCbOb h4CrJWWR584QYKvwVH+CjwB3CbnLGRYEVGx2fTa/kYCjC8SXCUvy/BOb5ATF CBC9pD+nZ01Ab9OUj5gEAX5rvo7Y2xCgU/4Nk5chQGTG5eqVcwSsPrl65pgy AWIaZjdc7Mj9bx5/baZOAGNLIbuJPbm/o9iUgzYBxZt8Tik4kPuemlO7Qp67 0mCfFZPk26q/7gQcI6At9JFqpSNpT/RNXfgpAry2yo4GnCftcftvfmFCxplW dEPmAgH/OqWz80m/GkwvWto6EWBTyZyvIO3UN7GWjJBclt16uI58v+F8Zft5 Z9LPF9mPO9wIkK/0fdhEckBQSPvIFQIM2sfXqbsQ0H3Rehfdm9RJfnRGJMkH Tu/zYPUjwMH71OUekhMOrPnMG0hAtf7sOVFXAlYk+9lFQgh4aWETeppkG75i Q5lwAo6n+04FkFy28DhOLYKApzsUEuJJFvl7YehINGnf3/1VFskBP7X2msSS OtotsfiB5O5CQT/bVwR8P2H8KZvkA4njle4pZN7TpwYTSE64j/HdTCfgTPxS SBDJy54vrO5lkXFiBr6x/O/3dyuPt9H5BLzfc/+kJMklR/SoyUVkfAZE746Q /m/dI6KVU0rAlIqVWQLJfkJEaClGwN+HxjVHSe5k/vhTU0VAXvj2sWEyPprj ydtaawkA1oGymyTHN95wHqwnYP9ohREbyUulhvnUZgL6jvS9DyTjbPVWcuVf BwGLEh7NNDI/JRErR9f2EVD45GW7JclbfZuebhki4IHXS1RI5vOmQ0a35Dip 0xdvoygkt+vf2a08Q/obw7A6SeZfXcXS6yBB1t2X2h33SH0scHJyW/8j97m4 8U8nqS9LarepKxsd/v4WrqXbEvCpo+CVDxcdbmz/PspOsm+Wg3KkAB0yhqwL WEm9zpuU21ZJ0kEkR/lpAKn34I7cHh05Okzzh1ZJkvXA65Bi80mRDjaNWU+/ mhEg5XnfKlOLDr9+Xt/RRurOLMLkzFMTOsj8jbtymazH/k26LTwWdMhPlCwo PEHW0Ss1sxAbOgwMdc/M/vf/VtY20xsudCi9CYGHdcm41g4bnLtFh1ylbIuz B8j8mrbXtQbT4ZCqWd4hTVJXHbUnjcPoUFhg5yhK1k3vWO6JI9F0CI3wZ/9I 1tU6Lj89mfd00Ao7GmlJ9p+LR3i1Gc10aNYIiLy7iQB6LUuZRycdWPfw6BQL kv3BlNAc66MDp4X/mn6yzmMd2tW7JuhwW9RTToDsA98DU1S+sDDg/ecOBv4P h51lavKP5RkQsfTTDw3ikHNEJpNzHwPKJCqa9Ptx0Pi5TTZoPwPSOH/z13Xj YNzJIn3tMAN+VDFc81rIvrdQu+usJQPivfWmWatx6FKx2yYZwgDvuATJpnQc nBdV+ULDGfBMbzGpJRUHavk69uEIBrwgzLfVJ+HAcaxk4k0cAx43C+imv8BB 4eymEolcBgy9vps2fQ+HoFs/LSU6GSDtpk7vJueT1Pf9z3cpzsGOjJpXLzbj kPeA98Fd1TlIW56YiBTEQdNo+Nag5hz8u7+QE7weB6P2KKdUvTlwsROtNWIn ++zEtMou6zmw28Ab+XSGBj953zTtvDcHQQe7Lpd/o4GnBb/Azu45CMtjenNe pIHju73xkgNzIB9cLv3gPA3MFw13yYzMQbTF2wfctuR8fvlYVZE6B6/3H7rF MKUBpY/HSodjHhC71LanB2gQ70xJtZKfh38hbtvaeGlQ6bOkEh0wDxpmbyK7 c6kgHDNkybF9ARI9Kvku/pyFHOvkdMJ3Ee79MX6lLjAFFtqBx2vKl0AzEhKd L41Bvu3lnZoryzAgfDJDZmgIFniOsH82/wfiTi0fZXUHwLRBS2177CoYhVNO XDzXDTxaa7+UvVqFtsMXv1840g1f3nSetEldhTDX10c9ZLpB0femw8ucVTjw LdYtk9EFvGLFj4SrVuG7+e6F3xFd8OPSvsFN+CrkVyVHYt864SC3TCTvKSY8 mWosuabeAQtXF7bmmDCh1mfsu6Z4B+R2Vb81sGDCDsMvt/i5O0A017n0kSMT 9ILslkbb2mHF/M0Iz00mpA99jDzm2w7FqWLaXGlMQJ/D8Z+lbeCxfrY6LZMJ Ig8/7gt80wZSNypMj+YzoSJ3yuDQ4zaI0T/nGlrGhIsz4aK4bRt40eKj2ZuY wLO65zwnexvIWruJprYzQWtxsUhxqhUGKjXeH+5lwtuHXxkXW1rBOLa94s44 E0yDCjTXvGsFbrZ3J3bMMuGXQ8+RK09bAbnfaMboTFjDy6Uz5NcK11uO2tkv MUFZ7bas64VW+L/nU+D/n0/5HyuDPK8= "]]}, Annotation[#, "Charting`Private`Tag$41732#1"]& ]}, {}, {}}, AspectRatio->NCache[GoldenRatio^(-1), 0.6180339887498948], Axes->{True, True}, AxesLabel->{None, None}, AxesOrigin->{0, 0}, DisplayFunction->Identity, Frame->{{False, False}, {False, False}}, FrameLabel->{{None, None}, {None, None}}, FrameTicks->{{Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}, {Automatic, Charting`ScaledFrameTicks[{Identity, Identity}]}}, GridLines->{None, None}, GridLinesStyle->Directive[ GrayLevel[0.5, 0.4]], ImagePadding->All, Method->{ "DefaultBoundaryStyle" -> Automatic, "DefaultMeshStyle" -> AbsolutePointSize[6], "ScalingFunctions" -> None, "CoordinatesToolOptions" -> {"DisplayFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& ), "CopiedValueFunction" -> ({ (Identity[#]& )[ Part[#, 1]], (Identity[#]& )[ Part[#, 2]]}& )}}, PlotRange->{{-2, 2}, {-2.718281055564716, 1.2130613071517131`}}, PlotRangeClipping->True, PlotRangePadding->{{ Scaled[0.02], Scaled[0.02]}, { Scaled[0.05], Scaled[0.05]}}, Ticks->{Automatic, Automatic}]], "Output", CellChangeTimes->{ 3.7197633107712383`*^9},ExpressionUUID->"759fbcc3-0654-4fe6-ab93-\ 8bdeaed07f74"] }, Open ]], Cell[CellGroupData[{ Cell[TextData[Cell[BoxData[ RowBox[{"0.1", "==", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", SuperscriptBox["\[Alpha]", "2"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], ")"}]}]}]], "Input", CellChangeTimes->{{3.7197632282821627`*^9, 3.7197632298262024`*^9}},ExpressionUUID->"ce663236-3e36-4195-a126-\ 96fb2e87b2c9"]], "WolframAlphaLong", CellChangeTimes->{{3.7197635080393705`*^9, 3.719763508639886*^9}},ExpressionUUID->"a5ddc21e-279e-4049-bd2a-\ 7cf74979ad27"], Cell[BoxData[ FrameBox[ TagBox[GridBox[{ { TagBox[GridBox[{ { DynamicBox[FEPrivate`FrontEndResource["WABitmaps", "WAErrorIcon"], ImageSizeCache->{58., {15., 45.}}], Cell[ "\:4ea7\:751f\:5185\:90e8\:9519\:8bef (1010)", FontWeight->Bold,ExpressionUUID-> "f93f4d36-faf9-4fdb-8c1a-83393894f8e3"]} }, AutoDelete->False, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"]}, {Cell[ "Computation error",ExpressionUUID-> "d73295c8-d2b1-4cac-84f5-bad8b026601a"]} }, DefaultBaseStyle->"Column", GridBoxAlignment->{"Columns" -> {{Left}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings->{"Columns" -> {{Automatic}}, "Rows" -> {{1.5}}}], "Column"], Alignment->Top, Background->GrayLevel[0.96], BaseStyle->{FontFamily -> "Helvetica"}, FrameMargins->{{20, 20}, {15, 15}}, FrameStyle->GrayLevel[0.85], ImageSize->Automatic, RoundingRadius->5, StripOnInput->False]], "Print", Deployed->True, CellChangeTimes->{ 3.719763513437147*^9},ExpressionUUID->"3b128e41-3f80-41d4-83e0-\ 43c4b0f9ce93"] }, Open ]], Cell[CellGroupData[{ Cell[TextData[Cell[BoxData[ RowBox[{ RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"1", "-", SuperscriptBox["\[Alpha]", "2"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], ")"}]}], "=", "0.1"}]], "Input", CellChangeTimes->{{3.7197632282821627`*^9, 3.7197632298262024`*^9}},ExpressionUUID->"8cd95f3d-52ef-4633-829b-\ 782995d17df2"]], "WolframAlphaLong", CellChangeTimes->{{3.7197635206462946`*^9, 3.7197635283664856`*^9}},ExpressionUUID->"110fc5ae-1435-4293-8072-\ 2d9ff693c878"], Cell[BoxData[ FrameBox[ TagBox[GridBox[{ { TagBox[GridBox[{ { DynamicBox[FEPrivate`FrontEndResource["WABitmaps", "WAErrorIcon"], ImageSizeCache->{58., {15., 45.}}], Cell[ "\:4ea7\:751f\:5185\:90e8\:9519\:8bef (1010)", FontWeight->Bold,ExpressionUUID-> "5dfb401d-28fe-4275-a8e8-93ae38584299"]} }, AutoDelete->False, GridBoxItemSize->{ "Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}], "Grid"]}, {Cell[ "Computation error",ExpressionUUID-> "d01f5f2e-e7ae-4101-a345-db5f740f6451"]} }, DefaultBaseStyle->"Column", GridBoxAlignment->{"Columns" -> {{Left}}}, GridBoxItemSize->{"Columns" -> {{Automatic}}, "Rows" -> {{Automatic}}}, GridBoxSpacings->{"Columns" -> {{Automatic}}, "Rows" -> {{1.5}}}], "Column"], Alignment->Top, Background->GrayLevel[0.96], BaseStyle->{FontFamily -> "Helvetica"}, FrameMargins->{{20, 20}, {15, 15}}, FrameStyle->GrayLevel[0.85], ImageSize->Automatic, RoundingRadius->5, StripOnInput->False]], "Print", Deployed->True, CellChangeTimes->{ 3.71976353341716*^9},ExpressionUUID->"c27d2874-77f9-401e-a512-0ceed60068c2"] }, Open ]], Cell[CellGroupData[{ Cell[BoxData[ RowBox[{"Solve", "[", RowBox[{ RowBox[{ RowBox[{"-", "0.25"}], "==", RowBox[{ SuperscriptBox["\[ExponentialE]", RowBox[{"-", SuperscriptBox["\[Alpha]", "2"]}]], " ", RowBox[{"(", RowBox[{ RowBox[{"-", "1"}], "+", RowBox[{"2", " ", SuperscriptBox["\[Alpha]", "2"]}]}], ")"}]}]}], ",", RowBox[{"{", "\[Alpha]", "}"}]}], "]"}]], "Input", CellChangeTimes->{ 3.719763853815338*^9, {3.7197638976947284`*^9, 3.7197639234866076`*^9}, 3.719763965457145*^9},ExpressionUUID->"3817a30a-798c-465a-8c41-\ 2bac1279a6d6"], Cell[BoxData[ RowBox[{"{", RowBox[{ RowBox[{"{", RowBox[{"\[Alpha]", "\[Rule]", RowBox[{"-", "0.5715781179177164`"}]}], "}"}], ",", RowBox[{"{", RowBox[{"\[Alpha]", "\[Rule]", "0.5715781179177164`"}], "}"}]}], "}"}]], "Output", CellChangeTimes->{ 3.7197638558092785`*^9, {3.719763899815901*^9, 3.7197639245756826`*^9}, 3.7197639660263453`*^9},ExpressionUUID->"e4b7fe85-ec9b-45b6-b4d2-\ 65e6aca4fe95"] }, Open ]], Cell[BoxData[ RowBox[{"-", "0.6508652133329005`"}]], "Input",ExpressionUUID->"4a0fdee4-f987-4e54-b8c1-595644b098d6"], Cell[BoxData["0.7682572447556435`"], "Input",ExpressionUUID->"9e5d8668-de0f-4fff-bd80-d356d82fa6c8"], Cell[BoxData["0.8774736331430676`"], "Input",ExpressionUUID->"1f2303c6-5806-4b06-8d39-9a538f66464b"], Cell[BoxData["0.5715781179177164`"], "Input",ExpressionUUID->"5901a85f-725f-46fd-8363-f7d4d0dac988"] }, WindowSize->{1920, 976}, WindowMargins->{{-4, Automatic}, {Automatic, -4}}, Magnification:>2.5 Inherited, FrontEndVersion->"11.1 for Microsoft Windows (64-bit) (2017\:5e745\:670816\ \:65e5)", StyleDefinitions->"Default.nb" ] (* End of Notebook Content *) (* Internal cache information *) (*CellTagsOutline CellTagsIndex->{} *) (*CellTagsIndex CellTagsIndex->{} *) (*NotebookFileOutline Notebook[{ Cell[CellGroupData[{ Cell[580, 22, 236, 5, 76, "Input", "ExpressionUUID" -> \ "d92d7c6d-87c4-43db-8cc0-9160d904741d"], Cell[819, 29, 164, 4, 107, "Output", "ExpressionUUID" -> \ "5dab1284-e1af-49fc-a188-940e0047f9d8"] }, Open ]], Cell[CellGroupData[{ Cell[1020, 38, 187, 4, 114, "Input", "ExpressionUUID" -> \ "374bd63a-4639-4345-bc78-38a35d23c40a"], Cell[1210, 44, 166, 4, 107, "Output", "ExpressionUUID" -> \ "b85dfd35-ede2-47f6-b1b5-d47350768040"] }, Open ]], Cell[CellGroupData[{ Cell[1413, 53, 414, 11, 158, "Input", "ExpressionUUID" -> \ "dcf4ba55-094a-4461-9ed5-10bd54a2c3ca"], Cell[1830, 66, 154, 3, 107, "Output", "ExpressionUUID" -> \ "583afd36-61cf-4e4e-a0c7-b104512f85e2"] }, Open ]], Cell[CellGroupData[{ Cell[2021, 74, 218, 6, 158, "Input", "ExpressionUUID" -> \ "09a735cb-20c7-4dae-905a-afda6a03d389"], Cell[2242, 82, 270, 8, 140, "Output", "ExpressionUUID" -> \ "44718d6e-5074-4dfe-befd-a09cc8ea5c1a"] }, Open ]], Cell[CellGroupData[{ Cell[2549, 95, 273, 7, 185, "Input", "ExpressionUUID" -> \ "37332664-3533-4676-90cc-bfd62cc95740"], Cell[2825, 104, 148, 3, 107, "Output", "ExpressionUUID" -> \ "70b633de-243c-4c5b-8160-07faefabb292"] }, Open ]], Cell[CellGroupData[{ Cell[3010, 112, 238, 6, 114, "Input", "ExpressionUUID" -> \ "314750d9-8827-4f9d-a30b-d87f547ece95"], Cell[3251, 120, 323, 10, 166, "Output", "ExpressionUUID" -> \ "7e727a88-ff86-496a-97e6-83942f162f85"] }, Open ]], Cell[CellGroupData[{ Cell[3611, 135, 330, 9, 189, "Input", "ExpressionUUID" -> \ "6c4262a4-a2bc-4478-b12b-12d3f4e89aed"], Cell[3944, 146, 149, 3, 107, "Output", "ExpressionUUID" -> \ "207a64d6-a357-49cb-ae60-746cf4ef3d1b"] }, Open ]], Cell[CellGroupData[{ Cell[4130, 154, 304, 8, 167, "Input", "ExpressionUUID" -> \ "cd43f385-9c27-47e5-8b97-043898c699ca"], Cell[4437, 164, 130, 3, 107, "Output", "ExpressionUUID" -> \ "a73e9da5-e100-4f37-aa11-e7ce0ab8b40d"] }, Open ]], Cell[4582, 170, 156, 3, 76, "Input", "ExpressionUUID" -> \ "76aeba9b-f8fa-454f-b4f4-84fc55daca5c"], Cell[CellGroupData[{ Cell[4763, 177, 2147, 52, 925, "Input", "ExpressionUUID" -> \ "60d87074-957d-48e0-b7b7-ddcd2714fbf0"], Cell[6913, 231, 541, 18, 114, "Output", "ExpressionUUID" -> \ "8afe3268-8d7e-4628-847f-6d3252f8076e"] }, Open ]], Cell[CellGroupData[{ Cell[7491, 254, 566, 18, 211, "Input", "ExpressionUUID" -> \ "440a6b15-42ed-4b4e-b36a-cee47b366fdc"], Cell[8060, 274, 1036, 31, 114, "Output", "ExpressionUUID" -> \ "c59fbd9d-f4bb-444d-8638-e5a644487b3e"] }, Open ]], Cell[CellGroupData[{ Cell[9133, 310, 566, 18, 211, "Input", "ExpressionUUID" -> \ "500e8cd3-ef3e-4f22-9e1f-a1f4fb08a751"], Cell[9702, 330, 1036, 31, 114, "Output", "ExpressionUUID" -> \ "50f3309a-5154-4d06-8c1d-e40dfdaed0ca"] }, Open ]], Cell[CellGroupData[{ Cell[10775, 366, 565, 18, 211, "Input", "ExpressionUUID" -> \ "1cbb9961-2b81-4fe7-9797-ea0081b355c5"], Cell[11343, 386, 565, 19, 114, "Output", "ExpressionUUID" -> \ "d56f92b0-5db4-4f0d-a039-aaaadf406b3d"] }, Open ]], Cell[CellGroupData[{ Cell[11945, 410, 591, 19, 266, "Input", "ExpressionUUID" -> \ "547ed18f-2219-4614-a6fd-a00d17e2afdf"], Cell[12539, 431, 768, 26, 224, "Output", "ExpressionUUID" -> \ "38494020-e2cb-4129-9d05-31b294ff12ec"] }, Open ]], Cell[13322, 460, 517, 17, 83, "Input", "ExpressionUUID" -> \ "ef27111c-fcaa-46e4-ae38-3c40b2380603"], Cell[CellGroupData[{ Cell[13864, 481, 825, 26, 211, "Input", "ExpressionUUID" -> \ "26db2f90-f6bc-42df-9f52-5e90f0c0368d"], Cell[14692, 509, 710, 24, 169, "Output", "ExpressionUUID" -> \ "337cefd5-1bf7-4b7b-a775-d2205e7a26f8"] }, Open ]], Cell[CellGroupData[{ Cell[15439, 538, 649, 22, 169, "Input", "ExpressionUUID" -> \ "3142631b-0295-4df6-81c5-7074eb1257e2"], Cell[16091, 562, 622, 22, 169, "Output", "ExpressionUUID" -> \ "ac104c0c-f9d8-46eb-9b6f-2b2d4603a3a0"] }, Open ]], Cell[CellGroupData[{ Cell[16750, 589, 649, 21, 266, "Input", "ExpressionUUID" -> \ "1035cc89-3d00-4b09-912f-c234378719c1"], Cell[17402, 612, 1045, 32, 156, "Output", "ExpressionUUID" -> \ "8a4580ca-2fc4-4be0-b063-901923b113e2"] }, Open ]], Cell[CellGroupData[{ Cell[18484, 649, 201, 5, 107, "Input", "ExpressionUUID" -> \ "c0405012-4461-439f-b531-16a7051b4e7f"], Cell[18688, 656, 132, 3, 107, "Output", "ExpressionUUID" -> \ "69209e38-1271-45ba-8431-34659581f44d"] }, Open ]], Cell[CellGroupData[{ Cell[18857, 664, 199, 5, 107, "Input", "ExpressionUUID" -> \ "56fdb65f-83a7-4c13-a9e1-dd56afe56607"], Cell[19059, 671, 130, 3, 107, "Output", "ExpressionUUID" -> \ "2ea9f3e3-c5ce-4494-95d5-58276d60d131"] }, Open ]], Cell[CellGroupData[{ Cell[19226, 679, 999, 30, 154, "Input", "ExpressionUUID" -> \ "439332a1-fddd-4ca0-8cb6-c438f550f6af"], Cell[20228, 711, 275, 9, 107, "Output", "ExpressionUUID" -> \ "a7e3e3eb-fdf2-4b74-94ff-5bce08a1e1bc"] }, Open ]], Cell[CellGroupData[{ Cell[20540, 725, 1121, 33, 154, "Input", "ExpressionUUID" -> \ "290f73bc-fa80-4847-b119-a947df32bf0c"], Cell[21664, 760, 273, 9, 107, "Output", "ExpressionUUID" -> \ "f85900fa-e2fb-4674-b03c-92ac2884cee2"] }, Open ]], Cell[CellGroupData[{ Cell[21974, 774, 263, 8, 76, "Input", "ExpressionUUID" -> \ "3e955858-2b4b-47f9-8891-d481cf1e6fe4"], Cell[22240, 784, 254, 8, 107, "Output", "ExpressionUUID" -> \ "4ed10eb6-6c2a-43a9-8a20-97bf1c4ab8d9"] }, Open ]], Cell[22509, 795, 218, 7, 76, "Input", "ExpressionUUID" -> \ "b57a2131-b02a-437c-990b-a4f6e51a7da5"], Cell[CellGroupData[{ Cell[22752, 806, 222, 5, 145, "Input", "ExpressionUUID" -> \ "0287842c-89bb-4215-ab82-f95d8a913025"], Cell[22977, 813, 483, 16, 156, "Output", "ExpressionUUID" -> \ "d3b56f93-255c-424d-85d3-c8a5c004b797"] }, Open ]], Cell[CellGroupData[{ Cell[23497, 834, 154, 3, 107, "Input", "ExpressionUUID" -> \ "a0bbc854-abce-40f6-86b6-bf284b44e98e"], Cell[23654, 839, 256, 8, 107, "Output", "ExpressionUUID" -> \ "6140fede-93ae-418d-a0f1-510b1d7e35ad"] }, Open ]], Cell[CellGroupData[{ Cell[23947, 852, 244, 7, 107, "Input", "ExpressionUUID" -> \ "9c52ef77-9ed2-48da-ad93-77404c4bc0ea"], Cell[24194, 861, 196, 6, 107, "Output", "ExpressionUUID" -> \ "2f39a6d9-ceb5-42c5-9d4e-97689e28e659"] }, Open ]], Cell[CellGroupData[{ Cell[24427, 872, 152, 3, 145, "Input", "ExpressionUUID" -> \ "04c2aceb-2850-49a4-adbb-bba9a29833af"], Cell[24582, 877, 419, 14, 156, "Output", "ExpressionUUID" -> \ "01e025f7-173f-4809-b8e4-8a3e57c59931"] }, Open ]], Cell[CellGroupData[{ Cell[25038, 896, 251, 8, 107, "Input", "ExpressionUUID" -> \ "2ccf8542-8e5f-44af-9dd9-a4142906f596"], Cell[25292, 906, 219, 7, 107, "Output", "ExpressionUUID" -> \ "edfeb771-decc-420c-a3d8-1a11a2610649"] }, Open ]], Cell[25526, 916, 223, 5, 114, "Input", "ExpressionUUID" -> \ "60842eb9-5e7b-40d0-a99a-e94dc9e944a4"], Cell[CellGroupData[{ Cell[25774, 925, 269, 9, 107, InheritFromParent, "ExpressionUUID" -> \ "f364e2a0-dc83-48ad-b7fd-a87e19c6a3f3"], Cell[26046, 936, 272, 9, 107, "Output", "ExpressionUUID" -> \ "976dbf80-de88-41c5-9179-b0a7cc1d60c0"] }, Open ]], Cell[CellGroupData[{ Cell[26355, 950, 117, 1, 145, "Input", "ExpressionUUID" -> \ "490a9dab-bc6c-4495-8b50-a580ffd8deee"], Cell[26475, 953, 243, 8, 107, "Output", "ExpressionUUID" -> \ "f97d91d7-891a-49c0-9a91-55f4e47ee2f8"] }, Open ]], Cell[CellGroupData[{ Cell[26755, 966, 257, 7, 145, "Input", "ExpressionUUID" -> \ "af33e3c9-e48c-4a44-80ba-3c069d5a3b1b"], Cell[27015, 975, 699, 21, 144, "Output", "ExpressionUUID" -> \ "d32e89ed-d907-4cec-b59e-3ba7f39c7981"] }, Open ]], Cell[CellGroupData[{ Cell[27751, 1001, 131, 3, 107, "Input", "ExpressionUUID" -> \ "a5805e99-2703-4a50-b555-f5729c7f1496"], Cell[27885, 1006, 219, 7, 107, "Output", "ExpressionUUID" -> \ "27f29886-2fde-4e5a-8238-82c4fae3036c"] }, Open ]], Cell[CellGroupData[{ Cell[28141, 1018, 232, 6, 145, "Input", "ExpressionUUID" -> \ "433b8884-bd07-4755-ba29-4b56adbbd5d6"], Cell[28376, 1026, 689, 19, 107, "Output", "ExpressionUUID" -> \ "219320a5-b351-424e-9387-d1b892f5d615"] }, Open ]], Cell[CellGroupData[{ Cell[29102, 1050, 1355, 39, 140, "Input", "ExpressionUUID" -> \ "261dea9d-709a-4642-b76c-2911e138885a"], Cell[30460, 1091, 177, 5, 107, "Output", "ExpressionUUID" -> \ "b816226c-b4e4-4aef-95fd-090edbefb024"] }, Open ]], Cell[30652, 1099, 172, 4, 76, "Input", "ExpressionUUID" -> \ "b0040dbe-5c60-4d06-9da7-c268bc77fd11"], Cell[CellGroupData[{ Cell[30849, 1107, 219, 4, 155, "WolframAlphaLong", "ExpressionUUID" -> \ "3fe0e9be-5059-4395-8bc3-f14fc7e47f6e"], Cell[31071, 1113, 23687, 466, 1149, "Print", "ExpressionUUID" -> \ "90da5ab4-0b41-4738-b6da-b1950e9dc6d5"] }, Open ]], Cell[CellGroupData[{ Cell[54795, 1584, 347, 11, 125, "Input", "ExpressionUUID" -> \ "4fd49bb5-d649-4355-a32b-abc1037418d1"], Cell[55145, 1597, 358, 12, 109, "Output", "ExpressionUUID" -> \ "97b27fe1-0906-4546-8a49-0234ef4bc866"] }, Open ]], Cell[CellGroupData[{ Cell[55540, 1614, 236, 5, 107, "Input", "ExpressionUUID" -> \ "85b2dc7d-e642-408d-af41-7f2958c153e1"], Cell[55779, 1621, 155, 2, 107, "Output", "ExpressionUUID" -> \ "3e42aa3c-2756-4b56-b547-0b72b2de98ea"] }, Open ]], Cell[CellGroupData[{ Cell[55971, 1628, 310, 10, 114, "Input", "ExpressionUUID" -> \ "3e5f0c66-bf14-4b80-b6fc-f1f92689a0aa"], Cell[56284, 1640, 256, 5, 140, "Output", "ExpressionUUID" -> \ "75c0b93d-484d-4233-a6aa-67cfd8685de5"] }, Open ]], Cell[CellGroupData[{ Cell[56577, 1650, 297, 7, 145, "Input", "ExpressionUUID" -> \ "1ae8fdd7-2b9b-47d1-858b-21bfad86bd58"], Cell[56877, 1659, 170, 5, 107, "Output", "ExpressionUUID" -> \ "9054076c-d176-4f79-ba76-8b847fed80df"] }, Open ]], Cell[57062, 1667, 146, 3, 76, "Input", "ExpressionUUID" -> \ "573b5e89-b8e6-4cd4-8a14-f1aac0644ec8"], Cell[57211, 1672, 100, 0, 76, "Input", "ExpressionUUID" -> \ "e8538c44-cf6f-4c18-bfac-c84bb39db7dd"], Cell[57314, 1674, 100, 0, 76, "Input", "ExpressionUUID" -> \ "f7908907-5ce4-4e3e-8a21-d608985c75ea"], Cell[57417, 1676, 149, 3, 76, "Input", "ExpressionUUID" -> \ "94d1adee-d6ee-4474-8808-0240dd9db6b1"], Cell[CellGroupData[{ Cell[57591, 1683, 336, 7, 212, "WolframAlphaLong", "ExpressionUUID" -> \ "693131f2-3166-44a6-8e7a-88deab6b8bf4"], Cell[57930, 1692, 88280, 1588, 2405, "Print", "ExpressionUUID" -> \ "8c954ef4-9b00-4f0e-aa05-21d538847f08"] }, Open ]], Cell[146225, 3283, 411, 12, 121, "Input", "ExpressionUUID" -> \ "69305c0e-90cf-4df9-bf4b-0f9c5fa29d61"], Cell[CellGroupData[{ Cell[146661, 3299, 441, 14, 124, InheritFromParent, "ExpressionUUID" -> \ "c09f2d78-19cb-44a5-bd00-00ccdb1ee483"], Cell[147105, 3315, 436, 14, 124, "Output", "ExpressionUUID" -> \ "911cbfbc-7ccb-40ff-8b24-fa1a16bd5d75"] }, Open ]], Cell[CellGroupData[{ Cell[147578, 3334, 239, 5, 107, "Input", "ExpressionUUID" -> \ "8074f209-747e-4b5a-a011-8c11cea30152"], Cell[147820, 3341, 160, 3, 107, "Output", "ExpressionUUID" -> \ "a75e1029-19cd-4e59-9776-b467803a2e33"] }, Open ]], Cell[CellGroupData[{ Cell[148017, 3349, 436, 14, 124, "Input", "ExpressionUUID" -> \ "a99de783-e963-4793-8bef-d52ad258cd7c"], Cell[148456, 3365, 436, 14, 124, "Output", "ExpressionUUID" -> \ "93594022-f597-490c-baf5-e7e9ff23cb05"] }, Open ]], Cell[CellGroupData[{ Cell[148929, 3384, 595, 17, 168, "Input", "ExpressionUUID" -> \ "4a25149a-25a1-40f7-90a1-69e87e4ee359"], Cell[149527, 3403, 473, 15, 129, "Output", "ExpressionUUID" -> \ "777bf915-6d35-481e-8bb0-1cd9450c2c1f"] }, Open ]], Cell[150015, 3421, 657, 19, 168, InheritFromParent, "ExpressionUUID" -> \ "7a8c89f3-0e13-4658-a1bc-d68e453b5960"], Cell[150675, 3442, 580, 18, 168, InheritFromParent, "ExpressionUUID" -> \ "1bac7775-4cfa-4409-b54a-96f2f58f2749"], Cell[CellGroupData[{ Cell[151280, 3464, 591, 18, 137, InheritFromParent, "ExpressionUUID" -> \ "e0203d6c-9287-4a2e-972b-df0123707b40"], Cell[151874, 3484, 567, 18, 129, "Output", "ExpressionUUID" -> \ "5a538ccc-2b5c-4154-84aa-7fc07f1618fb"] }, Open ]], Cell[CellGroupData[{ Cell[152478, 3507, 555, 16, 168, "Input", "ExpressionUUID" -> \ "26d5225c-91db-49a0-971d-8ad263ce288e"], Cell[153036, 3525, 584, 18, 129, "Output", "ExpressionUUID" -> \ "8745c525-2bdb-4684-a7bb-e756b86cce2e"] }, Open ]], Cell[153635, 3546, 117, 1, 76, "Input", "ExpressionUUID" -> \ "accb0ecb-f84f-41d5-93d6-c1edef7935bf"], Cell[153755, 3549, 592, 18, 168, "Input", "ExpressionUUID" -> \ "d6a0d96f-f412-4fb2-8a5d-b3102080b50e"], Cell[CellGroupData[{ Cell[154372, 3571, 561, 17, 168, InheritFromParent, "ExpressionUUID" -> \ "9369dca9-cc8c-4024-b61c-2288481b7eb0"], Cell[154936, 3590, 568, 18, 129, "Output", "ExpressionUUID" -> \ "3b595e36-ecd9-4f36-9052-389017630dba"] }, Open ]], Cell[CellGroupData[{ Cell[155541, 3613, 595, 18, 168, "Input", "ExpressionUUID" -> \ "01de2042-82b4-4fd6-9fe1-5dbbdfcd1fde"], Cell[156139, 3633, 208, 5, 107, "Output", "ExpressionUUID" -> \ "5ab11d51-d0f8-4531-89e5-19312b55308c"] }, Open ]], Cell[156362, 3641, 589, 18, 137, InheritFromParent, "ExpressionUUID" -> \ "8c9e8405-8e9a-4337-b262-e6f0b001beae"], Cell[CellGroupData[{ Cell[156976, 3663, 539, 16, 168, "Input", "ExpressionUUID" -> \ "fbe1f173-792c-4711-bb28-d84afc5b6533"], Cell[157518, 3681, 562, 16, 107, "Output", "ExpressionUUID" -> \ "51ae21f5-4a5d-46ab-b0d9-d1e2462dbc03"] }, Open ]], Cell[CellGroupData[{ Cell[158117, 3702, 555, 17, 168, "Input", "ExpressionUUID" -> \ "8494df0a-4de5-43fa-81b0-ba3362aad6d2"], Cell[158675, 3721, 12951, 231, 627, "Output", "ExpressionUUID" -> \ "759fbcc3-0654-4fe6-ab93-8bdeaed07f74"] }, Open ]], Cell[CellGroupData[{ Cell[171663, 3957, 598, 16, 155, "WolframAlphaLong", "ExpressionUUID" -> \ "a5ddc21e-279e-4049-bd2a-7cf74979ad27"], Cell[172264, 3975, 1222, 36, 353, "Print", "ExpressionUUID" -> \ "3b128e41-3f80-41d4-83e0-43c4b0f9ce93"] }, Open ]], Cell[CellGroupData[{ Cell[173523, 4016, 599, 16, 155, "WolframAlphaLong", "ExpressionUUID" -> \ "110fc5ae-1435-4293-8072-2d9ff693c878"], Cell[174125, 4034, 1219, 35, 353, "Print", "ExpressionUUID" -> \ "c27d2874-77f9-401e-a512-0ceed60068c2"] }, Open ]], Cell[CellGroupData[{ Cell[175381, 4074, 603, 18, 168, "Input", "ExpressionUUID" -> \ "3817a30a-798c-465a-8c41-2bac1279a6d6"], Cell[175987, 4094, 437, 12, 107, "Output", "ExpressionUUID" -> \ "e4b7fe85-ec9b-45b6-b4d2-65e6aca4fe95"] }, Open ]], Cell[176439, 4109, 117, 1, 76, "Input", "ExpressionUUID" -> \ "4a0fdee4-f987-4e54-b8c1-595644b098d6"], Cell[176559, 4112, 100, 0, 76, "Input", "ExpressionUUID" -> \ "9e5d8668-de0f-4fff-bd80-d356d82fa6c8"], Cell[176662, 4114, 100, 0, 76, "Input", "ExpressionUUID" -> \ "1f2303c6-5806-4b06-8d39-9a538f66464b"], Cell[176765, 4116, 100, 0, 76, "Input", "ExpressionUUID" -> \ "5901a85f-725f-46fd-8363-f7d4d0dac988"] } ] *) (* End of internal cache information *)